• 제목/요약/키워드: grid connected battery charger

검색결과 12건 처리시간 0.017초

An Economic Evaluation under Thailand Feed in Tariff of Residential Roof Top Photovoltaic Grid Connected System with Energy Storage for Voltage Stability Improving

  • Treephak, Kasem;Saelao, Jerawan;Patcharaprakiti, Nopporn
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.120-128
    • /
    • 2015
  • In this paper, Residential roof top photovoltaic system with 9.9 kW design is proposed. The system composed of 200 Watts solar array 33 panels connecting in series 10 strings and parallels 3 strings which have maximum voltage and current are 350 V and 23.8 A. The 10 kW sinusoidal grid-connected inverter with window voltage about 270-350 is selected to convert and transfer DC Power to AC Power at PCC (Point of Common Coupling) of power system following to utility standard. However the impact of fluctuation and uncertainty of weather condition of PV may decrease the voltage stability and voltage collapse of power system. In order to solve this problem the energy storage such 120 V 1200 Ah battery bank and 30 kVAR capacitor are designed for voltage stability control. The other expensed for installing the system such battery charger, cable, accessories and maintenance cost are concerned. The economic analysis by using investment from money loan with interest about 7% and use own money which loss income of deposit about 3% are calculated as 671,844 and 547,044 for PV system with energy storage and non energy storage respectively. The solar energy from PV is about 101,616 Bath per year which evaluated by using the value of $5kWh/m^2/day$ from average peak sun hour (PSH) of the Thailand and 6.96 Bath/kWh of Feed in Tariff Incentive. The payback periods of four scenarios are proposed follow as i) PV system with energy storage and use loan money is 15 years ii) PV system with no energy storage and use loan money is 10 years iii) PV system with energy storage and use deposit money is 9 years iv) PV system with energy storage and use deposit money is 7 years. In addition, the other scenarios of economic analysis such no FIT support and other type of economic analysis such NPV and IRR are proposed in this paper.

Control and Analysis of an Integrated Bidirectional DC/AC and DC/DC Converters for Plug-In Hybrid Electric Vehicle Applications

  • Hegazy, Omar;Van Mierlo, Joeri;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.408-417
    • /
    • 2011
  • The plug-in hybrid electric vehicles (PHEVs) are specialized hybrid electric vehicles that have the potential to obtain enough energy for average daily commuting from batteries. The PHEV battery would be recharged from the power grid at home or at work and would thus allow for a reduction in the overall fuel consumption. This paper proposes an integrated power electronics interface for PHEVs, which consists of a novel Eight-Switch Inverter (ESI) and an interleaved DC/DC converter, in order to reduce the cost, the mass and the size of the power electronics unit (PEU) with high performance at any operating mode. In the proposed configuration, a novel Eight-Switch Inverter (ESI) is able to function as a bidirectional single-phase AC/DC battery charger/ vehicle to grid (V2G) and to transfer electrical energy between the DC-link (connected to the battery) and the electric traction system as DC/AC inverter. In addition, a bidirectional-interleaved DC/DC converter with dual-loop controller is proposed for interfacing the ESI to a low-voltage battery pack in order to minimize the ripple of the battery current and to improve the efficiency of the DC system with lower inductor size. To validate the performance of the proposed configuration, the indirect field-oriented control (IFOC) based on particle swarm optimization (PSO) is proposed to optimize the efficiency of the AC drive system in PHEVs. The maximum efficiency of the motor is obtained by the evaluation of optimal rotor flux at any operating point, where the PSO is applied to evaluate the optimal flux. Moreover, an improved AC/DC controller based Proportional-Resonant Control (PRC) is proposed in order to reduce the THD of the input current in charger/V2G modes. The proposed configuration is analyzed and its performance is validated using simulated results obtained in MATLAB/ SIMULINK. Furthermore, it is experimentally validated with results obtained from the prototypes that have been developed and built in the laboratory based on TMS320F2808 DSP.