• Title/Summary/Keyword: grey water

Search Result 85, Processing Time 0.03 seconds

Inflow Forecasting Using Fuzzy-Grey Model (Fuzzy-Grey 모형을 이용한 유입량 예측)

  • Kim, Yong;Yi, Choong Sung;Kim, Hung Soo;Shim, Myung Pil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.759-764
    • /
    • 2004
  • 본 연구는 Deng(1989)이 제시한 Grey 모형을 이용하여 성진강댐의 월유입량을 예측하였고 그 방법을 제시하였다. Grey 모형은 시계열모형이나 다른 모형에 비해 비교적 적은 수의 자료를 이용하고, 간단할 수식으로 구성되어 있는 장점이 있으나, 적은 수의 자료로 인해 입력자료가 가지는 증감의 경향(trend)으로 오차가 발생하기 쉽다. 그러므로 예측오차를 극복하기 위해서 Fuzzy 시스템을 결합한 Fuzzy-Grey 모형을 구성하였고 Fuzzy 시스템에 필요한 매개변수를 추정하기 위해 최적화기법인 유전자 알고리즘(GA; Genetic Algorithm)을 이용하였다. Grey 모형과 결합된 Fuzzy 시스템은 현재의 입력자료가 가지는 패턴과 가장 유사한 패턴의 과거자료를 이용하여 현재의 입력자료의 예측오차를 추론해내는 기능을 가진다. 오차를 추론하기 위해서 과거 월유입량 자료중 현재 입력 자료와 유사한 패턴을 Grey 상관도를 이용하여 검색하고, 보다 높은 유사성을 가지는 패턴을 선별하고자 노름(norm)을 사용하였고, 유전자 알고리즘의 탐색공간을 제한하였다. 이렇게 구성한 Fuzzy-Grey 모형을 이용하여 전국적인 가뭄년도였던 1992년, 1988년, 2001년에 대해 섬진강댐의 월유입량을 예측하였다. 오차는 1982년, 2001년, 1988년 순으로 비슷한 크기의 오차가 발생하였는데 결과를 분석하여 보면, 급격한 월유입량의 변화가 있었던 경우에 오차가 크게 발생하였으나 가뭄년도에 대해 월유입량의 불확실성이 큼에도 불구하고 비교적 월유입량의 추세를 잘 예측한 것으로 판단된다. 본 연구에서 적용한 Fuzzy-Grey 모형은 적은 수의 자료를 이용하여 예측하고 예측결과를 다시 입력자료로 사용하는 업데이트 방식을 사용하기 때문에 예측결과의 오차가 완전하게 보정되지 않으면 다음 결과에 역시 오차를 주게 되어 오차보정이 상당히 중요하다는 것을 알 수 있었다. 오차를 보다 효과적으로 보정하기 위해서는 퍼지제어에 사용되는 퍼지규칙의 수를 늘리고, 유입량에 직접적인 영향을 주는 강우량과 연계한 2변수의 Fuzzy-Grey 모형을 이용한다면 보다 정확한 유입량 예측이 가능할 것으로 사료된다.

  • PDF

Physiological Responses of Grey Mullet(Mugil cephalus) and Nile Tilapia(Oreochronis niloticus) by Gradual Change in Salinity of Rearing Water (사육수의 단계적인 염분변화에 따른 숭어(Mugil cephalus) 와 틸라피아(Oreochronis niloticus)의 생리적반응)

  • 허준욱;장영진
    • Journal of Aquaculture
    • /
    • v.12 no.4
    • /
    • pp.283-292
    • /
    • 1999
  • Physiological responses (cortisol, glucose, GPT, GOT, hematocrit, sodium, chloride, potassium, total protein and osmolality), growth and survival rates of grey mullet and Nile tilapia were tested by the gradual salinity changes for 70 days. Three different sizes of grey mullet, small (MS, $13.3\pm1.8cm$), middle(MM, $28.9\pm3.6cm$) and large (ML, $36.0\pm2.0cm$), and three different sizes of tilapia, small (TS,$16.5\pm1.7cm$), middle (TM, $20.6\pm1.8cm$) and large (TL, $27.2\pm2.7cm$)were used. Salinity of reareing water was increased $\5textperthousand$ in every 5 days until it reached at $0\textperthousand$. The cortisol concentrations in all size groups of grey mullet were increased at both full strength seawater (SW) and fresh water (FW) at the end. The cortisol concentrations of TM and TL groups were higher in SW than FW (0 and 70 days). The GOT values of grey mullet were lower than those of Nile tilapia. The sodium concentrations of grey mullet in SW were ranged 160~184 mEq/$\ell$, while those of Nile tilapia were the highest in the SW. No mortality was observed in MM and ML groups but survival rate of MS group was 76$\textperthousand$. Overall survival rate of Nile tilapia was lower than grey mullet. Survival rate of TS, TM and TL groups were $79\textperthousand$, $29\textperthousand$ and $55\textperthousand$, respectively.

  • PDF

Risk assessment of water inrush in karst tunnels based on a modified grey evaluation model: Sample as Shangjiawan Tunnel

  • Yuan, Yong-cai;Li, Shu-cai;Zhang, Qian-qing;Li, Li-ping;Shi, Shao-shuai;Zhou, Zong-qing
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.493-513
    • /
    • 2016
  • A modified grey clustering method is presented to systematically evaluate the risk of water inrush in karst tunnels. Based on the center triangle whitenization weight function and upper and lower limit measure whitenization weight function, the modified grey evaluation model doesn't have the crossing properties of grey cluster and meets the standard well. By adsorbing and integrating the previous research results, seven influence factors are selected as evaluation indexes. A couple of evaluation indexes are modified and quantitatively graded according to four risk grades through expert evaluation method. The weights of evaluation indexes are rationally distributed by the comprehensive assignment method. It is integrated by the subjective factors and the objective factors. Subjective weight is given based on analytical hierarchy process, and objective weight obtained from simple dependent function. The modified grey evaluation model is validated by Jigongling Tunnel. Finally, the water inrush risk of Shangjiawan Tunnel is evaluated by using the established model, and the evaluation result obtained from the proposed method is agrees well with practical situation. This risk assessment methodology provides a powerful tool with which planners and engineers can systematically assess the risk of water inrush in karst tunnels.

Real-time Upstream Inflow Forecasting for Flood Management of Estuary Dam (담수호 홍수관리를 위한 상류 유입량 실시간 예측)

  • Kang, Min-Goo;Park, Seung-Woo;Kang, Moon-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1061-1072
    • /
    • 2005
  • A hydrological grey model is developed to forecast short-term river runoff from the Naju watershed located at upstream of the Youngsan estuary dam in Korea. The runoff of the Naju watershed is measured in real time at the Naju streamflow gauge station, which is a key station for forecasting the upstream inflow and operating the gates of the estuary dam in flood period. The model's governing equation is formulated on the basis of the grey system theory. The model parameters are reparameterized in combination with the grey system parameters and estimated with the annealing-simplex method In conjunction with an objective function, HMLE. To forecast accurately runoff, the fifth order differential equation was adopted as the governing equation of the model in consideration of the statistic values between the observed and forecast runoff. In calibration, RMSE values between the observed and simulated runoff of two and six Hours ahead using the model range from 3.1 to 290.5 $m^{3}/s,\;R^2$ values range from 0.909 to 0.999. In verification, RMSE values range from 26.4 to 147.4 $m^{3}/s,\;R^2$ values range from 0.940 to 0.998, compared to the observed data. In forecasting runoff in real time, the relative error values with lead-time and river stage range from -23.4 to $14.3\%$ and increase as the lead time increases. The results in this study demonstrate that the proposed model can reasonably and efficiently forecast runoff for one to six Hours ahead.

Real-Time Forecasting of Flood Discharges Upstream and Downstream of a Multipurpose Dam Using Grey Models (Grey 모형을 이용한 다목적댐의 유입 홍수량과 하류 하천 홍수량 실시간 예측)

  • Kang, Min-Goo;Cai, Ximing;Koh, Deuk-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.61-73
    • /
    • 2009
  • To efficiently carry out the flood management of a multipurpose dam, two flood forecasting models are developed, each of which has the capabilities of forecasting upstream inflows and flood discharges downstream of a dam, respectively. The models are calibrated, validated, and evaluated by comparison of the observed and the runoff forecasts upstream and downstream of Namgang Dam. The upstream inflow forecasting model is based on the Grey system theory and employs the sixth order differential equation. By comparing the inflows forecasted by the models calibrated using different data sets with the observed in validation, the most appropriate model is determined. To forecast flood discharges downstream of a dam, a Grey model is integrated with a modified Muskingum flow routing model. A comparison of the observed and the forecasted values in validation reveals that the model can provide good forecasts for the dam's flood management. The applications of the two models to forecasting floods in real situations show that they provide reasonable results. In addition, it is revealed that to enhance the prediction accuracy, the models are necessary to be calibrated and applied considering runoff stages; the rising, peak, and falling stages.

Assessment & Estimation of Water Footprint on Soybean and Chinese Cabbage by APEX Model (APEX 모형을 이용한 밭작물(콩, 배추) 물발자국 영향 평가)

  • Hur, Seung-Oh;Choi, Soonkun;Hong, Seong-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.159-165
    • /
    • 2019
  • BACKGROUND: The water footprint (WF) is an indicator of freshwater use that appears not only at direct water use of a consumer or producer, but also at the indirect water use. As an indicator of 'water use', the water footprint includes the green, blue, and grey WF, and differs from the classical measure of 'water withdrawal' because of green and grey WF. This study was conducted to assess and estimate the water footprint of the soybean and Chinese cabbage. METHODS AND RESULTS: APEX model with weather data, soil and water quality data from NAS (National Institute of Agricultural Sciences), and farming data from RDA (Rural Development Administration) was operated for analyzing the WF of the crops. As the result of comparing the yield estimated from APEX with the yield extracted from statistic data of each county, the coefficients of determination were 0.83 for soybean and 0.97 for Chinese cabbage and p-value was statistically significant. The WFs of the soybean and Chinese cabbage at production procedure were 1,985 L/Kg and 58 L/Kg, respectively. This difference may have originated from the cultivation duration. The WF ratios of soybean were 91.1% for green WF and 8.9% for grey WF, but the WF ratios of Chinese cabbage were 41.5% for green WF and 58.5% for grey WF. CONCLUSION: These results mean that the efficiency of water use for soybean is better than that for Chinese cabbage. The results could also be useful as an information to assess environmental impact of water use and agricultural farming on soybean and Chinese cabbage.

Stock assessment and Diagnosis of Flatted grey mullet, Mugil cephalus, in the coastal water of Yeosu (여수 연안의 숭어 (Mugil cephalus) 자원평가 및 진단)

  • PARK, Hee Won;SEO, Yong Il;KIM, Hee Yong;ZHANG, Chang Ik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.3
    • /
    • pp.448-453
    • /
    • 2015
  • This study was performed to estimate biomass and to provide management plan through population ecological characteristics, including survival rate, instantaneous coefficient of natural and fishing mortalities, and age at first capture of Flathead grey mullet, Mugil cephalus, in the coastal waters of Yeosu. Survival rate (S) of the flathead grey mullet was 3.671. The instantaneous coefficients of natural mortality (M) and fishing mortality (F) was estimated to be 0.325/year, 0.962/year for flathead grey mullet. Also fist capure age of flathead grey mullet was 3.61year. The current biomass of the flathead grey mullet in the study area was estimated to be 19.6 M/T and $F_{0.1}$ and $F_{40%}$ were estimated 0.340/year, 0.225/year. For the stock assessment result, flathead grey mullet was not overfished but overfishing.

Age and growth of the flathead grey mullet (Mugil cephalus) in the coastal water of Yeosu (여수 연안 숭어 (Mugil cephalus)의 연령과 성장 연구)

  • Zhang, Chang-Ik;Park, Hee-Won;Kwon, Hyeok-Chan
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.3
    • /
    • pp.203-213
    • /
    • 2011
  • The age and growth of flathead grey mullet, Mugil cephalus, were studied using samples collected from the coastal water of Yeosu from September 2009 to August 2010. Spawning season estimated from the gonadosometic index (GSI) was from November to January. A method for increasing the readability of the otolith was described and criteria for the interpretation of otolith was provided. The annual ring was formed in September once a year. Annual ring in otolith for flathead grey mullet is validated for fish aged 1-8 using the marginal increment analysis. Using the sectioned otolith, between reader precision was 84%. Also, Within-reader agreement for sectioned otolith age readings was higher (reader 1=84%, reader 2=87%). The relationship between fork length and total weight was TW=$0.022FL^{2.818}$. The estimated von Bertalanffy growth parameters for the flathead grey mullet were $L_{\infty}$=67.97cm K=0.164/year and $t_o$=-0.81year.

An optimal classification method for risk assessment of water inrush in karst tunnels based on grey system theory

  • Zhou, Z.Q.;Li, S.C.;Li, L.P.;Shi, S.S.;Xu, Z.H.
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.631-647
    • /
    • 2015
  • Engineers may encounter unpredictable cavities, sinkholes and karst conduits while tunneling in karst area, and water inrush disaster frequently occurs and endanger the construction safety, resulting in huge casualties and economic loss. Therefore, an optimal classification method based on grey system theory (GST) is established and applied to accurately predict the occurrence probability of water inrush. Considering the weights of evaluation indices, an improved formula is applied to calculate the grey relational grade. Two evaluation indices systems are proposed for risk assessment of water inrush in design stage and construction stage, respectively, and the evaluation indices are quantitatively graded according to four risk grades. To verify the accuracy and feasibility of optimal classification method, comparisons of the evaluation results derived from the aforementioned method and attribute synthetic evaluation system are made. Furthermore, evaluation of engineering practice is carried through with the Xiakou Tunnel as a case study, and the evaluation result is generally in good agreement with the field-observed result. This risk assessment methodology provides a powerful tool with which engineers can systematically evaluate the risk of water inrush in karst tunnels.

The Persimmon Dye with Experiment of Changing Concentration and Iron-dye Process, its Application Possibility for Textile Design (감염색의 농도변화와 매염효과를 통해본 천연염색 디자인)

  • Lee, Soon-Deuk
    • Fashion & Textile Research Journal
    • /
    • v.10 no.6
    • /
    • pp.822-826
    • /
    • 2008
  • The data for application of mordanting is shown in this experiment by researching dying properties of iron-dye process and concentration changes using persimmon. The strength of persimmon-dying fabrics was controlled by diluting persimmon dye with water and iron mordanting showed the possibility of textile design. The experiments were performed with various conditions processed with iron mordanting liquid by adding water to persimmon-dying liquid and drying well. The most dark color of fabric is observed with the pure persimmon dying without adding water. As the adding water is increased, the color of the fabric is getting lighter with the amount of adding water. After process of iron mordanting, dark color of the fabric turns into dark grey and light color turns into light grey. The possibility of persimmon dying with fabric can be applied in the design of textile with deepened color.