• Title/Summary/Keyword: greenhouse horticulture

Search Result 366, Processing Time 0.026 seconds

Development of A Two-Variable Spatial Leaf Photosynthetic Model of Irwin Mango Grown in Greenhouse (온실재배 어윈 망고의 위치 별 2변수 엽 광합성 모델 개발)

  • Jung, Dae Ho;Shin, Jong Hwa;Cho, Young Yeol;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.161-166
    • /
    • 2015
  • To determine the adequate levels of light intensity and $CO_2$ concentration for mango grown in greenhouses, quantitative measurements of photosynthetic rates at various leaf positions in the tree are required. The objective of this study was to develop two-variable leaf photosynthetic models of Irwin mango (Mangifera indica L. cv. Irwin) using light intensity and $CO_2$ concentration at different leaf positions. Leaf photosynthetic rates at different positions (top, middle, and bottom) were measured by a leaf photosynthesis analyzer at light intensities (0, 50, 100, 200, 300, 400, 600, and $800{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) with $CO_2$ concentrations (100, 400, 800, 1200, and $1600{\mu}mol{\cdot}mol^{-1}$). The two-variable model consisted of the two leaf photosynthetic models expressed as negative exponential functions for light intensity and $CO_2$ concentrations, respectively. The photosynthetic rates of top leaves were saturated at a light intensity of $400{\mu}mol{\cdot}^{-2}{\cdot}s^{-1}$, while those of middle and bottom leaves saturated at $200{\mu}mol{\cdot}^{-2}{\cdot}s^{-1}$. The leaf photosynthetic rates did not reach the saturation point at a $CO_2$ concentration of $1600imolmol^{-1}$. In validation of the model, the estimated photosynthetic rates at top and bottom leaves showed better agreements with the measured ones than the middle leaves. It is expected that the optimal conditions of light intensity and $CO_2$ concentration can be determined for maximizing photosynthetic rates of Irwin mango grown in greenhouses by using the two-variable model.

Effect of Polymer, Calcium, Perlite and Chitosan in Soil Organic Amendment on Growth in Perennial Ryegrass (유기질 토양개량재에서 고분자 중합체, 칼슘, 펄라이트 및 키토산이 퍼레니얼 라이그래스의 생장에 미치는 효과)

  • Kim, Kyoung-Nam
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.24-34
    • /
    • 2012
  • The study was carried out to investigate the effects of polymer, calcium, perlite and chitosan on the growth of perennial ryegrass (Lolium perenne L., PR) and to provide a basic information needed for their practical application when establishing garden, parks, athletic field and golf courses with these materials. A total of 24 treatment combinations were applied in the study. Treatments were made of water-swelling polymer (WSP), calcium, perlite and chitosan mixed in soil organic amendment (SOA). Germination rate, turfgrass coverage, turfgrass density and top growth were evaluated in PR under greenhouse conditions. Significant differences were observed for these growth characteristics among the treatments. Turfgrass density and plant height, evaluated on a weekly basis, varied with time after seeding. A proper mixing rate of WSP was considered to be lower 3% for the growth of PR with an exception of being below 6% for turfgrass density. Germination rate and early survival capacity were greatly influenced by calcium and chitosan among the elements of calcium, perlite, and chitosan. But there was little effect by perlite. Calcium and chitosan were most effective one for turfgrass density and coverage, respectively. Top leaf-growth was influenced by all three elements, but the greatest effect was highly linked with calcium. Chitosan was very effective in early germination and vertical leaf growth, as compared with the others. Future studies are required for measuring the effect of WSP, calcium, perlite and chitosan on the turf growth characteristics in root zone mixtures of sand+SOA before a practical field use.

Effect of Double Layer Nonwoven Fabrics on the Growth, Quality and Yield of Oriental Melon(Cucumis melo L. var. makuwa Mak.) under Vinyl House (보온부직포 이중피복이 참외의 생육, 품질 및 수량에 미치는 영향)

  • Shin Yong Seub;Park So Deuk;Do Han Woo;Bae Su Gon;Kim Jwoo Hwan;Kim Byung Soo
    • Journal of Bio-Environment Control
    • /
    • v.14 no.1
    • /
    • pp.22-28
    • /
    • 2005
  • The use of blankets to preserve heat in oriental melon cultivation is a common practise without artificial heating and warming systems. Efficiency of blanket decreased with annually usage. This experiment was conducted to investigate the effect of double layer nonwoven fabrics on heat conservation, plant growth, fruit quality and yield of oriental melon in greenhouse. The results were compared among the non-woven fabrics of 9+3, 6+6, 6+3 and 12 ounce from transplanting to April 20, 2001, 2002. Night temperature within tunnel was high at 9+3, 6+6, 6+3 and 12 ounce in order. In plant growth, stem length, leaf numbers and exudate, under double layer nonwoven fabrics were better than single layer blanket of 12 ounce especially, 9+3 double layer blanket was the best. Fruit weight, flesh thickness, soluble solid and marketable yield rate remained same in all treatments. Fermented fruit rate was the highest in 12 ounce as $32.9\%,\;19.6\%\;under\;9+3,\;17.1\%\;under\;6+6,\;16.6\%$ under 6+3 double layer nonwoven fabric, respectively. Compared to 2,260kg yield per 10a of 12 ounce single layer nonwoven fabrics, $7\%$ was increased under 9+3 but $3\%\;and\;13\%$ were decreased under 6+6 and 6+3 double layer nonwoven fabrics, respectively. Compared to income, 4,499-thousand-won per 10a, of 12 ounce single layer blanket, $13\%\;and\;3$ were increased under 9+3 and 6+6 double layer nonwoven fabrics, respectively. Whereas, $10\%$ decreased under 6+3 double layer nonwoven fabrics. From this results it is evident that 9+3 double layer nonwoven fabrics was the best for thermokeeping, fruit quality, and was most economic under non heating system.

Effect of LED as Light Quality on the Germination, Growth and Physiological Activities of Broccoli Sprouts (LED 광질이 브로콜리 새싹의 발아, 생장 및 생리활성에 미치는 영향)

  • Cho, Ja-Yong;Son, Dong-Mo;Kim, Jong-Man;Seo, Beom-Seok;Yang, Seung-Yul;Bae, Jong-Hyang;Heo, Buk-Gu
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.116-123
    • /
    • 2008
  • This study was carried out to investigate into the effect of light-emitting diode (LED) for the light quality as a light source on the broccoli seed germination and the physiological activity of vegetable sprouts. We have also germinated seeds of the broccoli and applied LED as a light quality such as blue, green, red, white, yellow and red + blue color lights to their sprouts for 14 hours and kept dark for 10 hours at the temperature of $25^{\circ}C$ (day)/$18^{\circ}C$ (night). Broccoli sprouts were extracted by methanol and their physiological activities were examined. All broccoli seeds were germinated at 3 days after seeding regardless of the light color. Total sprout fresh weight were mostly became highest by 0.389g (10 plants) at 8 days after seeding when their sprouts were grown under blue color light. Total phenol compound contents in broccoli sprouts were extremely increased by $83.0\;mg{\cdot}L^{-1}$ under the white light, and total flavonoid contents were most much more by $72.6\;mg{\cdot}L^{-1}$ under the blue light. DPPH radical scavenging activity at $2,000\;mg{\cdot}L^{-1}$ were most highest by 93.5% in broccoli sprouts grown under the white light. Nitrite radical scavenging activity at the concentration of $500\;mg{\cdot}L^{-1}$ in sprout extracts were the most increased by 66.9% under the yellow light, and tyrosinase inhibition activity at $2,000\;mg{\cdot}L^{-1}$ in sprout extracts were by 14.5% under red light.

Heating Performance Analysis of the Heat Pump System for Agricultural Facilities using the Waste Heat of the Thermal Power Plant as Heat Source (발전소 폐열을 이용한 농업시설용 히트펌프시스템의 난방 성능 분석)

  • Kang, Youn Koo;Kang, Suk Won;Paek, Yee;Kim, Young Hwa;Jang, Jae Kyung;Ryou, Young Sun
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.317-323
    • /
    • 2017
  • In this study, the heating performance and the energy saving effect of the heat pump system using hot waste water(waste heat) of the thermal power plant discharged from a thermal power plant to the sea were analyzed. The greenhouse area was $5,280m^2$ and scale of the heat pump system was 120 RT(Refrigeration Ton), which was divided into 30 RT, 40 RT and 50 RT. The heat pump system consisted of the roll type heat exchangers, hot waste water transfer pipes, heat pumps(30, 40, 50 RT), a heat storage tank and fan coil units. The roll type heat exchangers was made of PE(Poly Ethylene) pipes in consideration of low cost and durability against corrosion, because hot waste water(sea water) is highly corrosive. And the heating period was 5 months from October to February. During the heating performance test(12 hours), the inlet water temperature of evaporator was changed from $32^{\circ}C$ to $26^{\circ}C$, and heat absorption of he evaporator was changed from 175 kW to 120 kW. The inlet water temperature of the condenser rose linearly from $15^{\circ}C$ to $50^{\circ}C$, and the heat release of condenser was reduced by 40 kW from 200 kW to 160 kW. And the power consumption of the heat pump system increased from 30 kW to 42 kW. When the inlet water temperature of condenser was $15^{\circ}C$, the heating COP(Coefficient Of Performance) was over 7.0. When it was $30^{\circ}C$, it dropped to 5.0, and when it was above $40^{\circ}C$, it decreased to less than 4.0. It was analyzed that the reduction of heating energy cost was 87% when compared to the duty free diesel that the carbon dioxide emission reduction effect was 62% by recycling the waste heat of the thermal power plant as a heat source of the heat pump system.

Changes in Transpiration Rates and Growth of Cucumber and Tomato Scions and Rootstocks Grown Under Different Light Intensity Conditions in a Closed Transplant Production System (식물공장형육묘시스템 내 광량에 따른 오이와 토마토 접수 및 대목의 증발산량 및 생육 변화)

  • Park, Seon Woo;An, Sewoong;Kwack, Yurina
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.399-405
    • /
    • 2020
  • Recently, it is difficult to produce uniform scions and rootstocks with high quality in a greenhouse due to weather extremes. The closed transplant production system is useful for producing scions and rootstocks with desirable morphological characteristics by environment control regardless of weather outside. In this study, we investigated transpiration rates and growth of cucumber and tomato scions and rootstocks grown under different light intensity conditions for precise irrigation control in a closed transplant production system. Hanging system to measure continuously the weight of plug tray consisting of seedlings and substrate with load-cell was installed in each growing bed. Using this system, we confirmed initial wilting point of cucumber and tomato seedlings, and conducted subirrigation when moisture content of substrate was not below 50%. The irrigation time of cucumber scions and rootstocks were 7 and 6 days after sowing, respectively. In tomato scions and rootstocks grown under PPF (photosynthetic photon flux) 300 μmol·m-2·s-1, the irrigation time were 5, 8, 11, and 13 days after sowing. Increasing light intensity increased transpiration rates and differences of transpiration rates by light intensity was higher in tomato seedlings. The growth of cucumber and tomato seedlings was promoted by increasing light intensity, especially, hypocotyl elongation and stem thickening was affected by light intensity. Cumulative transpiration rate of plug tray in cucumber and tomato seedlings was increased by increasing light intensity, and daily transpiration rate per seedling was regressed by 1st-order linear equation with high correlation coefficient. Estimation of transpiration rates by weighing continuously plug tray of vegetable seedlings can be useful to control more accurately irrigation schedule in a closed transplant production system.

Uplift Capacity of Pipe Foundation for Single-span Greenhouse (단동 온실용 파이프 기초의 인발저항력 검토)

  • Choi, Man Kwon;Yun, Sung Wook;Kim, Ha Neul;Lee, Si Young;Yu, Chan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.69-78
    • /
    • 2015
  • In order to provide design data support for reducing gale damage of single-span greenhouses, this paper experimentally evaluated the uplift capacity of a rafter pipe and continuous pipe foundation (anti-disaster standard), usually used for single-span greenhouses according to compaction ratio, embedded depth, and soil texture. In the reclaimed soil (Silt loam) and the farmland soil (Sandy loam), the ultimate uplift capacities of rafter pipe were 72.8kgf and 60.7kgf, respectively, and those of continuous pipe foundation were 452.7kgf and 450.3kgf, respectively at an embedded depth of 50cm and compaction rate of 85% (the hardest ground condition). The results showed that the ultimate uplift capacity of continuous pipe foundation was significantly improved at more than 6 times that of the rafter pipe. The soil texture considered in this paper had a sand content of 35%~59% and a silt content of 39%~58%, and it was shown that the ultimate uplift capacity did not have a significant difference depending on soil texture, and these results show that installing the rafter pipe and continuous pipe foundation while maintaining appropriate compaction conditions can give an advantage in securing stability in the farmland of greenhouses without significantly being influenced by soil texture. Based on the results of this paper, it was determined that maintaining a compaction rate above 75% for the continuous pipe foundation and above 85% for the rafter pipe was advantageous for securing stability in greenhouses. Especially when continuous pipe foundation of anti-disaster standard was applied, it was determined to be significantly advantageous in acquiring stability in greenhouses to prevent climate disaster.

Growth Responses of Potted Gerbera 'Sunny Lemon' under Non-Nutrient Solution Recycling System by Media and Nutrient Contents (비순환식 분화 양액재배시 배지와 양액함량에 따른 거베라 'Sunny Lemon'의 생육반응)

  • Kil, Mi-Jung;Shim, Myung-Sun;Park, Sang-Kun;Shin, Hak-Gi;Jung, Jae-A;Kwon, Young-Soon
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.73-80
    • /
    • 2011
  • To investigate the characteristics of plant growth and flower quality of gerbera 'Sunny Lemon' by amount of nutrient solution, young seedling plants, 'Sunny Lemon' were transplanted to rock-wool and medium of peat moss and perlite mixed with 1 to 2 and they were acclimatized in greenhouse during about 1 month. Nutrient solution supplied to the plants is sonneveld solution of 1/2 concentration and treatments launched June 24, 2010 when average plant height was $20{\pm}1cm$. Nutrient contents as a standard for starting point of irrigation by time domain reflectometry (TDR) were determined with 60-65%, 70-75%, and 80-85%. Results of growth during vegetative growth, plant height, leaf width and leaf number increased by 10% in rockwool, but they were not significantly different. As for plant growth depending on nutrient content, 80-85% treatment showed the highest values. Leaf number increased by 60%, and leaf width and plant height had a about 40% increase than initial growth. Effectiveness for flower quality, yield and days to flowering were superior when nutrient content of media was higher than in the others. Especially, average days to flowering in 80-85% content was advanced by 7-10 days compared to the day in 60-65% treatment. The total amount of nutrient supply per plant was higher in mixed medium than in rockwool, but change patterns of EC and pH were enhanced in rockwool. Based on our results, we recommended that growth, cut flower, and yield of gerbera 'Sunny Lemon' were more effective when nutrient content of mixed medium was maintained at 80-85%.

Effect of Temperature, Glasshouse Forcing Date and GA3 on the Growth and Flowering of Hydrangea macrophylla Ser. (온도, 입실시기 및 GA3 처리가 수국의 생육 및 개화에 미치는 영향)

  • Lee, Hee Doo;Kim, Si Dong;Kim, Ju Hyoung;Lee, Jong Won;Kim, Tae Jung;Lee, Cheol Hee
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.4
    • /
    • pp.260-265
    • /
    • 2008
  • Studies were carried out to elucidate the effect of temperature, glasshouse forcing date and $GA_3$ on the growth and flowering of pot Hydrangea macrophylla Ser. The plant height was elongated in the $5^{\circ}C$ treatments as 38 cm compared with $20^{\circ}C$ treatment as 6.7 cm, and stem length showed the similar results. The leaf length and width was broadened in the lower temperature, and stem diameter showed the same tendency. The first flowering date in the $15^{\circ}C$ and $20^{\circ}C$ treatment shortened markedly than $5^{\circ}C$ treatment. Days to flowering date of $5^{\circ}C$ was 161 day, while it shortened as 88 day in the $15^{\circ}C$ treatment. The flowering rate was 75.8~90.7% in the temperature. The plant height was elongated in the late glasshouse forcing date, and the leaf length and width showed the similar tendency. The plant height increased in the higher concentration of $GA_3$ compared to the control, and leaf length and width showed the similar results. The first flowering day was advanced by 7 days in the $GA_3$ $50mg{\cdot}L^{-1}$ treatment which had been transferred to greenhouse on Dec. 30 compared with the control of which first flowering day was March 17, and the days to first flowering was conspicuously shortened in the late glasshouse forcing treatment. The width of flower cluster was increased in the $GA_3$ at Dec. 30 glasshouse forcing treatment. The flowering rate was markedly decreased as 62.3% in the control of Nov. 15 treatment, but was increased as 97.9% of $GA_3$ $50mg{\cdot}L^{-1}$ of Jan. 15 treatment.

Growth and Flowering of Cut Spray Chrysanthemum 'Charming Eye' and 'Pink Pride' by Daminozide (스프레이 절화국화 '챠밍아이'와 '핑크프라이드'의 daminozide에 의한 생육 및 개화)

  • Lee, Chang Hee
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.2
    • /
    • pp.89-95
    • /
    • 2011
  • This study was conducted to improve commercial quality of cut spray chrysanthemums 'Charming Eye' and 'Pink Pride' bred in Korea by foliar application of daminozide, suppressing excessive elongation of peduncle caused by high temperature in greenhouse. Applications were made at two floral-bud-developmental stages and concentrations used were 0, 500, 1000, and $2000mg{\cdot}L^{-1}$. As for 'Charming Eye', cut flower length, peduncle diameter, stem diameter, flower bud diameter, and the number of flower buds did not show any significant difference among all treatments including control. However, the suppressing effect of peduncle elongation, widening angle of flower cluster arrangement on apical part, and increasing parallel flower buds in stage I showed better than those in stage II regardless of daminozide concentration. As for 'Pink Pride', cut flower length, peduncle diameter, and stem diameter did not show any significant difference among all treatments including control but angle of flower cluster on apical part increased compared to control as daminozide was sprayed at stage I and II except $2,000mg{\cdot}L^{-1}$ daminozide-sprayed at stage II. The number of flower buds and flower bud diameter showed the greatest increment through $1,000mg{\cdot}L^{-1}$ daminozide-sprayed at stage I and did the least values as sprayed with $2,000mg{\cdot}L^{-1}$ daminozide at stage II. Daminozide also gradually reduced peduncle length in a concentration-dependant manner but elongation of peduncle foliar-sprayed at stage I showed the more suppressing effect than that at stage II. Increasing the number of parallel flower buds showed the best results when sprayed with $2,000mg{\cdot}L^{-1}$ at stage I. In conclusion, we recommended that foliar spraying with $500-1,000mg{\cdot}L^{-1}$ daminozide at stage I and foliar spraying with $1,000-2,000mg{\cdot}L^{-1}$ daminozide at stage I improved cut flower quality of 'Channing Eye' and 'Pink Pride', respectively.