• Title/Summary/Keyword: greenhouse gases emission

Search Result 323, Processing Time 0.025 seconds

Design and Optimization of a Biomass Production System Combined with Wind Power Generation and LED on Marine Environment (LED가 결합된 야간풍력발전 활용을 포함한 해상환경 바이오매스 생산시스템의 최적 설계)

  • Hong, Gi Hoon;Cho, Sunghyun;Kang, Hoon;Park, Jeongpil;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.74-82
    • /
    • 2015
  • Carbon dioxide was designated as one of greenhouse gases that cause global warming. Among various ways to solve the $CO_2$ emission issue, the 3rd-generation biomass (algae) production is considered as a viable method to reduce $CO_2$ in the atmosphere. In this research, we propose a design of an innovative sustainable production system by utilizing the 3rd generation biomass in the environment of floating production storage and offloading (FPSO). Existing biomass production systems depend on the solar energy and they cannot continue producing biomass at night. Electricity produced from offshore wind farms also need an efficient way to store the energy through energy storage system (ESS) or deliver it real-time through power grid, both requiring heavy investment of capital. Thus, we design an offshore grid structure harnessing LED lights to supply the necessary light energy, by using the electricity produced from the wind farm, resulting in the maximized production of biomass and efficient use of wind farm energy. The final design integrates the biomass production system enhanced by LED lights with a wind power generation. The suggested NLP model for the optimal design, implemented in GAMS, would be useful for designing improved offshore biomass production systems combined with the wind farm.

Study on the Mineral Carbonation from Autoclaved Lightweight Concrete (ALC) (경량 기포콘크리트를 이용한 광물탄산화 연구)

  • Chae, Soo-Chun;Lee, Seung-Woo;Bang, Jun-Hwan;Song, Kyoung-Sun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.439-450
    • /
    • 2020
  • Global warming caused by the emission of greenhouse gases into the atmosphere is being treated as a major problem for the human life, and mineral carbonation is drawing attention as one of many countermeasures against this situation. In this study, mineral carbonation experiments using autoclaved lightweight concrete (ALC) were performed under various conditions to determine its potential as a carbonation material. ALC can be regarded as a promising material for carbonation because it contains about 27 wt.% of CaO, a major component of mineral carbonation. The CaCO3 content produced as a result of the carbonation of ALC calculated on the assumption that all of the CaO content participates in mineral carbonation is about 40 wt.%. The optimum conditions for the mineral carbonation reaction from ALC are the solid-liquid ratio of 0.01 and the reaction time of 180 minutes when calcite is considered as a single product, or 0.06 and 180 minutes when mixture of calcite and vaterite can be considered. The coexistence of vaterite with calcite at solid-liquid ratio of 0.06 or higher was interpreted to be the case where vaterite formed in the later stage and did not change to calcite until the reaction was completed.

The Development of Tidal Power System Can be Installed in Existing Dykes - The Open Channel Experimental Verification (기존 방조제에 설치 가능한 조력발전 장치 개발 - 개수로 현장실험 검증)

  • HyukJin Choi;Dong-Hui Ko;Nam-Sun Oh;Shin Taek Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.1
    • /
    • pp.13-21
    • /
    • 2023
  • As problems such as difficulties in securing stable energy resources and global warming due to the emission of greenhouse gases due to the use of fossil fuels have emerged, interest in the development of renewable energy is increasing. Since the tidal phenomenon has a regularity that occurs regularly with a certain period, it is possible to predict accurately in advance, which has a advantage in terms of energy recovery. Therefore, various methods have been devised to utilize the tide as an energy source. Tidal power using barrages is a representative method that is widely operated, but the promotion of tidal power generation projects is being delayed or stopped due to the decrease in the level of water in the tidal basin, changes in water quality and in the ecosystem. In this study, a field experiment was conducted to develop and verify the performance of a tidal power device applicable to sea areas where dykes are already installed. As a result of carrying out four cases of experiments using two water tanks, pipe lines, open channels, weirs, and water turbine and generator, the possibility of developing a power generation system capable of 10 kW output or more and 60% efficiency or more was confirmed. These research results can be used for small-scale tidal power by utilizing the existing dykes.

A Study on the Prior Leaching and Recovery of Lithium from the Spent LiFePO4 Cathode Powder Using Strong Organic Acid (강유기산을 이용한 폐LiFePO4 양극분말로부터 리튬의 선침출에 대한 연구)

  • Dae-Weon Kim;Soo-Hyun Ban;Hee-Seon Kim;Jun-Mo Ahn
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.105-112
    • /
    • 2024
  • Globally, the demand for electric vehicles has surged due to greenhouse gas regulations related to climate change, leading to an increase in the production of used batteries as a consequence of the battery life issue. This study aims to selectively leach and recover valuable metal lithium from the cathode material of spent LFP (LiFePO4) batteries among lithium-ion batteries. Generally, the use of inorganic acids results in the emission of toxic gases or the generation of large quantities of wastewater, causing environmental issues. To address this, research is being conducted to leach lithium using organic acids and other leaching agents. In this study, selective leaching was performed using the organic acid methane sulfonic acid (MSA, CH3SO3H). Experiments were conducted to determine the optimal conditions for selectively leaching lithium by varying the MSA concentration, pulp density, and hydrogen peroxide dosage. The results of this study showed that lithium was leached at approximately 100%, while iron and phosphorus components were leached at about 1%, verifying the leaching efficiency and the leaching rates of the main components under different variables.

Effects of Soil Organic Matter Contents, Paddy Types and Agricultural Climatic Zone on CH4 Emissions from Rice Paddy Field (벼 논에서 토양 유기물 함량, 논 유형 및 농업기후대가 CH4 배출에 미치는 영향)

  • Ko, Jee-Yeon;Lee, Jae-Saeng;Woo, Koan-Sik;Song, Seok-Bo;Kang, Jong-Rae;Seo, Myung-Chul;Kwak, Do-Yeon;Oh, Byeong-Gun;Nam, Min-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.887-894
    • /
    • 2011
  • To evaluate the effects of abiotic factors of paddy fields on greenhouse gases (GHGs) emissions from rice paddy fields, $CH_4$ emission amounts were investigated from rice paddy fields by different soil organic matter contents, paddy types, and agricultural climatic zone in Yeongnam area during 3 years. $CH_4$ emission amounts according to soil organic matter contents in paddy field were conducted at having different contents of 5 soil organic matters fields (23.6, 28.7, 31.0, 34.5, and $38.0g\;kg^{-1}$), The highest $CH_4$ emission amount was recorded in the highest soil organic matters plot of $38.0g\;kg^{-1}$. High correlation coefficient (r=$0.963^{**}$) was obtained between $CH_4$ emissions from paddy fields and their soil organic matter contents. According to paddy field types, $CH_4$ emission amounts were investigated at 4 different paddy fields as wet paddy, sandy paddy, immature paddy, and mature paddy. The highest $CH_4$ emissions was recorded in wet paddy (100%) and followed as immature paddy 64.0%, mature paddy 46.8%, and sandy paddy 23.8%, respectively. For the effects of temperature on $CH_4$ emissions from paddy fields, 4 agricultural climatic zones were investigated, which were Yeongnam inland zone (YIZ), eastern coast of central zone (ECZ), plain area of Yeongnam inland mountainous zone (PMZ), and mountainous area of Yeongnam inland mountainous zone (MMZ). The order of $CH_4$ emission amounts from paddy fields by agricultural climatic zone were YIZ (100%) > ECZ (94.6%) > PMZ (91.6%) > MMZ (78.9%). The regression equation between $CH_4$ emission amounts from paddy fields and average air temperature of Jul. to Sep. of agricultural climatic zone was y = 389.7x-4,287 (x means average temperature of Jul. to Sep. of agricultural climatic zone, $R^2=0.906^*$)

Reduction of Carbon-Dioxide Emission Applying Carbon Capture and Storage(CCS) Technology to Power Generation and Industry Sectors in Korea (국내 전력 발전 및 산업 부문에서 탄소 포집 및 저장(CCS) 기술을 이용한 이산화탄소 배출 저감)

  • Wee, Jung-Ho;Kim, Jeong-In;Song, In-Sung;Song, Bo-Yun;Choi, Kyoung-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.961-972
    • /
    • 2008
  • In 2004, total emissions of Greenhouse Gases(GHGs) in Korea was estimated to be about 590 million metric tons, which is the world's 10th largest emissions. Considering the much amount of nation's GHG emissions and growing nation's position in the world, GHG emissions in Korea should be reduced in near future. The CO$_2$ emissions from two sub-sections of energy sector in Korea, such as thermal power plant and industry section(including manufacturing and construction industries), was about 300 million metric tons in 2004 and this is 53.3% of total GHG emissions in Korea. So, the mitigation of CO$_2$ emissions in these two section is more important and more effective to reduce the nation's total GHGs than any other fields. In addition, these two section have high potential to qualitatively and effectively apply the CCS(Carbon Capture and Storage) technologies due to the nature of their process. There are several CCS technologies applied to these two section. In short term, the chemical absorption technology using amine as a absorbent could be the most effectively used. In middle or long term, pre-combustion technology equipped with ATR(Autothermal reforming), or MSR-$H_2$(Methane steam reformer with hydrogen separation membrane reactor) unit and oxyfuel combustion such as SOFC+GT(Solid oxide fuel cell-Gas turbine) process would be the promising technologies to reduce the CO$_2$ emissions in two areas. It is expected that these advanced CCS technologies can reduce the CO$_2$ avoidance cost to $US 8.5-43.5/tCO$_2$. Using the CCS technologies, if the CO$_2$ emissions from two sub-sections of energy sector could be reduced to even 10% of total emissions, the amount of 30 million metric tons of CO$_2$ could be mitigated.

Comparison of Methane Production in Korean Native Cattle (Hanwoo) Fed Different Grain Sources (곡류 사료원별 육성기 한우 장내발효에 의한 메탄가스 배출량 비교)

  • Seol, Yong-Joo;Kim, Kyoung-Hoon;Baek, Youl-Chang;Lee, Sang-Cheol;Ok, Ji-Woun;Lee, Kang-Yeon;Hong, Seong-Koo;Park, Kyu-Hyun;Choi, Chang-Weon;Lee, Sung-Sil;Oh, Young-Kyoon
    • Journal of Animal Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • Methane production during anaerobic fermentation in the rumen represents an energy loss to the host animal and induces emissions of greenhouse gases in the environment. Our study focused on comparison in methane production from growing Korean native steers fed different grain sources. Six Hanwoo steers (BW = $180.6{\pm}3.1$ kg) were fed, on a DM basis (TDN 2.80 kg), 40% timothy and 60% barley concentrate (Barley) or corn concentrate (Corn), respectively, based on the Korean Feeding Standards. Each period lasted 18 days including a 14-day adaptation and a 4-day measuring times. The steers were in the head hood chamber system (one cattle per chamber) during each measuring time to measure heat and methane production per day. Different grain sources did not affect digestibilities of dry matter, crude protein, crude fiber, crude fat, NDF, ADF and nitrogen-free extract. The mean methane concentrations per day were 202.0 and 177.1 ppm for Barley and Corn, respectively. Methane emission averaged 86.8 and 77.7 g/day for Barley and Corn, respectively. Methane emission factor by maintenance energy requirement for the growing steers fed barley based concentrate was higher than the steers fed corn based concentrate (Barley vs. Corn, 31.7 kg $CH_4\;head^{-1}\;yr^{-1}$ vs. 28.4 kg $CH_4\;head^{-1}\;yr^{-1}$). Thus, methane conversion rate was 0.065 (6.5%) and 0.055 (5.5%) for Barley and Corn, respectively.

Determination of the Optimum Application Rate of Pig Slurry for Red Pepper Cultivation (고추에 대한 돈분액비 시용기준 설정)

  • Kang, Bo-Goo;Kim, Hyun-Ju;Lee, Gyeong-Ja;Park, Seong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.6
    • /
    • pp.388-395
    • /
    • 2004
  • This study was carried out to determine the application rate of pig slurry for red pepper. Field experiment was designed with non-fertilizer, chemical fertilizer recommended by soil testing (CFRST) and pig slurry treatments. In pig slurry (PS) plots, pig slurry was applied as basal fertilizer with different equivalents to nitrogen of chemical fertilizer plot (60%: PS60, 80%: PS80, 100%: PS100, 120%: PS120) and chemical fertilizer was top-dressed additionally. Soil organic matter contents after 50 day of planting and after experiment in the plots treated with PS were higher than that of CFRST plot, whereas content of $NO_3-N$ of CFRST plot was higher than that of PS plot. Growth of red pepper were lowest in the non-fertilizer plot. Plant lengths of red pepper at 50 day after planting were similar among the different treatments, plant lengths of red pepper of PS100, PS120 and CFRST at 100 day after planting were higher than those of the PS60 and PS80 plots. But Main stem and stem diameter of red pepper were not different among the treatments. Uptake rate of N, P and K by red pepper plant were 27-44, 9-16 and 41-68% for total N, $P_2O_5$ and $K_2O$, respectively. Utilization of applied fertilizer ingredient by red pepper plant were in the order of PS80> PS60> FRST> PS100> PS120. Yield of red pepper tends to increase by 3% in the PS100 compared with the CFRST, but there was not significant difference between PS120 and CFRST. Chemical component of run-off collected from the furrow of the red pepper field was not different among the treatments. Greenhouse gases ($CH_4$ and $N_2O$) emission of non-fertilizer, PS100 and CFRST during the whole red pepper growth period were 4.0, 4.8 and $5.9kg\;CH_4\;ha^{-1}$, and 0.74, 6.68 and $8.38kg\;N_2O\;ha^{-1}$. Emission of $CH_4$ and $N_2O$ in PS100 was higher than those of CFRST by 23% and 26%, respectively. In this connection, to be used the pig slurry for red pepper, it is required that pig slurry must be decomposed for six months or more. Consequently, pig slurry equivalent to nitrogen of basal fertilizer of CFRST with additional top dressing of chemical fertilizer is recommend as an optimum application rate of pig slurry for red pepper.

Evaluation of N2O Emissions with Different Growing Periods (Spring and Autumn Seasons), Tillage and No Tillage Conditions in a Chinese Cabbage Field (배추의 재배시기와 경운 유.무에 따른 아산화질소 배출 평가)

  • Kim, Gun-Yeob;Jeong, Hyun-Cheol;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1239-1244
    • /
    • 2011
  • Importance of climate change and its impact on agriculture and environment has increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere. Nitrous oxide ($N_2O$) emission in upland fields were assessed in terms of emissions and their control at the experimental plots of National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) located in Suwon city. It was evaluated $N_2O$ emissions with different growing periods (spring and autumn seasons), tillage and no tillage conditions in a chinese cabbage field. The results were as follows: 1) An amount of $N_2O$ emissions were high in the order of Swine manure compost>NPK>Hairy vetch+N fertilizer. By tillage and no tillage conditions, $N_2O$ emissions were reduced to 33.7~51.8% (spring season) and 31.4~76.7% (autumn season) in no-tillage than tillage conditions. 2) In autumn season than those spring season, $N_2O$ emissions at NPK, hairy vetch+N fertilizer and swine manure compost were reduced to 49.6%, 39.0% and 60.0%, respectively, in tillage treatment and 59.5%, 70.6% and 58.7%, respectively, in no-tillage treatment. 3) $N_2O$ emission measured in this study was 15.2~86.4% lower with tillage and no tillage treatments than that of the IPCC default value (0.0125 kg $N_2O$-N/kg N).

A Study on Calculation of Air Pollutant Emissions from ships at Incheon Port and the Effects of Eco-Friendly Policies (인천항 선박 대기오염물질 배출량 산정 및 친환경 정책 효과에 대한 연구)

  • Lee, Jungwook;Lee, Hyangsook
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.1
    • /
    • pp.129-142
    • /
    • 2022
  • In the past, interest in air pollution was concentrated on greenhouse gases, but in recent years, interest in fine dust has been increasing. The media and environmental organizations continue to emphasize air pollution caused by fine dust. The awareness of fine dust is increasing, and air pollution generated at ports is analyzed to be serious as a domestic factor excluding foreign inflows. Recognizing this, in order to reduce air pollution generated at ports, special laws on improving air quality, such as port areas, have been enacted in Korea, and attempts are being made to curb air pollution caused by ports. In this law, it is a policy that regulates air pollutants generated not only by ships but also throughout ports such as vehicles and unloading machines, and representative are ECA, VSR, and AMP. This study attempted to analyze the effects of these eco-friendly policies at Incheon Port. First of all, a study was conducted to calculate emissions assuming that there was no policy, analyze each policy, and finally calculate and compare actual emissions reflecting all policies. The methodology presented by the European Environmental Administration and the U.S. Environmental Protection Agency was used, and pollutants to be analyzed were analyzed for sulfur oxides (SOX), carbon monoxide (CO), nitrogen oxides (NOX), total floating substances (TSP), fine dust and ultrafine dust (PM10, PM2.5) and ammonia (NH3). As a result of the analysis, it was analyzed that the actual emission reflecting all policies was about 4,097 tons/year, which had an emission reduction effect of about 760 tons/year compared to about 4,857 tons/year when the policy was not reflected. When the effects of each policy were analyzed individually, it was found that ECA 4,111 tons/year, VSR 4,854 tons/year, and AMP 4,843 tons of air pollutant emissions occurred The results of this study can be used as basic data and evidence for policy establishment related to the atmospheric environment at Incheon Port.