• Title/Summary/Keyword: green tea polyphenol

Search Result 93, Processing Time 0.022 seconds

Study of Antidotes on the Nephrotoxicity of Ochratoxin A (Ochratoxin A의 신장독성감소 방법에 대한 연구)

  • 서경원;김준규;김태완;정세영;김효정
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.2
    • /
    • pp.121-128
    • /
    • 1998
  • Ochratoxin A (OA) is a mycotoxin produced by Aspergillus ochraceus as well as other molds. It is a natural contaminant of mouldy food and feed. OA has a number of toxic effects, the most prominant being nephrotoxicity. Futhermore, OA is immunosuppressive, genotoxic, teratogenic and carcinogenic. OA inhibits protein synthesis by competition with phenylalanine in the phenylalanine-tRNA aminoacylation reaction. Recently, lipid peroxidation induced by OA has been reported, indicating that the lesion induced by this mycotoxin could be also related to oxidative pathway. Since it seems impossible to avoid contamination of foodstuffs by toxigenic fungi, detoxification and detoxication of OA are needed. In this study we investigated the protective effects of aspartame (Asp), phenylalanine (Phe), polyphenol 70S (PP) and aloe extract (AE) on the nephrotoxicity induced by subacute exposure to the OA. Asp and Phe are structural analogues of OA. PP, an ingredient of Green Tea and AE have been known as antioxidant and radical scavenger. Phe (40 mg/kg, i.p.) and Asp (25 mg/kg, p.o.) were administered to Sprague-Dawley rats simultaneously with OA (2.0 mg/kg, p.o.) for 2 weeks. PP (200 mg/kg, p.o.) and AE (50 mg/kg, i.v.) were pretreated before administration of OA, for 2 weeks and 3 days, respectively. Using enzymuria, BUN level, creatinemia and histophathologic examination as indices of renal damage, we observed that all of four compounds prevented the nephrotoxic effects induced by OA. It seems that structural analogues of OA such as Asp and Phe have better protective effect on the nephrotoxicity of OA than antioxidants. These results indicate that 1) formation of free radical and lipid peroxidation are likely to be involved in the nephrotoxicity of OA in vivo, 2) Asp, PP and AE might be used for prevention of renal lesions in cases of ochratoxicosis.

  • PDF

Effects of epigallocatechin gallate on $CoCl_2-induced$ apoptosis in PC12 cells (PC12 세포에서 $CoCl_2$ 유발 세포자멸사에 대한 epigallocatechin-gallate의 역할)

  • Mo, Hyun-Chul;Choi, Nam-Ki;Kim, Seon-Mi;Kim, Won-Jae;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.1
    • /
    • pp.13-24
    • /
    • 2006
  • Neuronal apoptotic events, consequently resulting in neuronal cell death, are occurred in hypoxic/ischemic condition. This cell death has been shown to be accompanied with the production of reactive oxygen species (ROS), which can attack cellular components such as nucleic acids, proteins and phospholipid. However, the underlying mechanisms of apoptosis induced in hypoxic/ischemic condition and its treatment methods are unsettled. Cobalt chloride $(CoCl_2)$ has been known to mimic hypoxic condition including the production of ROS. Epigallocatechin gallate (EGCG), a green tea polyphenol, has diverse pharmacologial activities in cell growth and death. This study was aimed to investigate the apoptotic mechanism by $CoCL_2$ and effects of EGCG on $CoCl_2-induced$ apoptosis in PC12 cells. Administration of $CoCl_2$ decreased cell survival in dose- and time-dependent manners and induced genomic DNA fragmentation. Treatment with $100{\mu}M$ EGCG for 30 min before PC12 cells were exposed to $150{\mu}M$ $CoCl_2$, being resulted in the cell viability and DNA fragmentation being rescued. $CoCl_2$ caused morphologic changes such as cell swelling and condensed nuclei whereas EGCG attenuated morphologic changes by $CoCl_2$. EGCG suppressed the apoptotic peak and a loss of ${\Delta}{\psi}_m$ induced by $CoCl_2$. $CoCl_2$ decreased Bcl-2 expression but Bax expression was not changed in $CoCl_2$- treated cells. EGCG attenuated the Bcl-2 underexpression by $CoCl_2$. $CoCl_2$ augumented the cytochrome c release from mitochondria into cytoplasm and increased caspase-8, -9 and caspase-3 activity a marker of the apoptotic executing stage. EGCG ameliorated the incruement in caspase-8, -9 and -3 activity, and cytochrome c release by $CoCl_2$ NAC (N-acetyl-cysteine), a scavenger of ROS, attenuated $CoCl_2-induced$ apoptosis in consistent with those of EGCG. These results suggest that $CoCl_2$ induces apoptotic cell death through both mitochondria- and death receptor-dependent pathway and EGCG has neuroprotective effects against $CoCl_2-induced$ apoptosis in PC12 cells.

  • PDF

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.