• Title/Summary/Keyword: green tea extracts

Search Result 212, Processing Time 0.019 seconds

Main constituents and bioactivities of different parts of aronia (Aronia melanocarpa) (아로니아 부위별 주요 성분 정량 및 생리활성 평가)

  • Gim, Sung Woong;Chae, Kyu Seo;Lee, Su Jung;Kim, Ki Deok;Moon, Jae-Hak;Kwon, Ji Wung
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.226-236
    • /
    • 2020
  • This study was designed to evaluate the biological activities and main constituents of different parts (fruit, leaf, and stem) of aronia (Aronia melanocarpa). The total phenolic and flavonoidcontents, DPPH and ABTS+ radical-scavenging activity, reducing power, and ferric reducing/antioxidant power were observed to follow the order of: leaves > stems > fruits, regardless of extraction solvents. The inhibitory activity against lipopolysaccharide-induced NO production in Raw 264.7 cells was significantly higher in the aronialeaf extract-treated group than in the groups treated with stem and fruit extracts. The ultra-performance liquid chromatography (UPLC) analysis was mainly composed of routine. In addition, the highest content level was measured in the case of the catechinmemberepigallocatechin witha higher value than that found in green tea. Theresults of this studyprovide useful information for understanding the chemical constituents and biological activities of aroniafruits and byproducts.

Combining Ginsenoside F1 with (-)-Epigallocatechin Gallate Synergistically Protects Human HaCaT Keratinocytes from Ultraviolet B-Induced Apoptosis (Ginsenosdie F1과 EGCG의 상승작용에 의한 자외선조사에 의한 세포 사멸 방지)

  • Tae Ryong, Lee;Si Young, Cho;Eun Hee, Lee;Myeong Hoon, Yeom;Ih-Seop, Chang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.253-261
    • /
    • 2004
  • Ginsenosides and green tea extracts show a variety of biomedical efficacies such as anti-aging, anti-oxidation and anti-tumor-promotion effects. (-)-Epigallocatechin-3-gallate (EGCG) has been reported to inhibit the UVB-induced apoptosis by increasing the Bcl-2-to-Bax ratio. We have previously shown that ginsenoside Fl protects human HaCaT cells from ultraviolet-B (UVB)-induced apoptosis by maintaining constant levels of Bcl-2 and Brn-3a. Here, we investigate the combined effect of ginsenoside Fl and EGCG on the protection of human HaCaT keratinocyte against UVB-induced apoptosis. When treated individually, although 5 ${\mu}$M ginsenoside Fl and 50${\mu}$M EGCG protected cells from UVB-induced apoptosis, 2${\mu}$M ginsenoside Fl or 10${\mu}$M EGCG treatment showed very little protection effect. However, cotreatement of 2${\mu}$M ginsenoside Fl and 10${\mu}$M EGCG successfully protected HaCaT cells from UVB-induced cell death. As expected, combining ginsenoside Fl and EGCG efficiently prevented UVB-induced decrease of Bcl-2 and Brn-3a expression. In addition, cotreatment with ginsenoside F1 and EGCG prevented the dephosphorylation of Rb, whereas individual treatment with ginsenoside Fl or EGCG failed to prevent the dephosphorylation of Rb even at high concentrations.