• Title/Summary/Keyword: green phosphor

Search Result 241, Processing Time 0.026 seconds

CaxSr2-xSiO4:Eu2+ Green-emitting Nano Phosphor for Ultraviolet Light Emitting Diodes

  • Kim, Jong Min;Choi, Hyung Wook
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.249-252
    • /
    • 2014
  • The aim of this work is to investigate the effect of $Ca_xSr_{2-x}$ and activator on the structural and luminescent properties of green-emitting $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ nano phosphor. Using urea as fuel and ammonium nitrate as oxidizer, $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ has been successfully synthesized, using a combustion method. The particles were found to be small, spherical and of round surface. SEM imagery showed that the phosphors particles are of nanosize. The $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ emission spectrum for 360 nm excitation showed a single band, with a peak at 490 nm, which is a green emission. The highest luminous intensity was at $1,000^{\circ}C$, which was obtained when the $Eu^{2+}$ content (y) was 0.05. The results support the application of $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ phosphor as a fluorescent material for ultraviolet light-emitting diodes (UV-LEDs). Characteristics of the synthesized $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ phosphor were investigated by means of X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and photoluminescence (PL) detection.

Eu$^{2+}$ Activated Green Phosphor $Ba_2CaMgSi_2O_8:Eu^{2+}$

  • Kim, Jeong-Seog;Piao, Ji Zhe;Choi, Jin-Ho;Cheon, Chae-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1076-1078
    • /
    • 2004
  • In this paper, we report $Eu^{2+}$ activated green phosphor $Ba_2CaMgSi_2O_8:Eu^{2+}$. This phosphor absorbs ultroviolet radation and emits a green visible light. The phosphors were synthesized by conventional solid state reaction method. Reagent grade $BaCO_3$, $CaCO_3$, MgO, $SiO_2$, $Eu_2O_3$ were used as raw materials. The raw materials were mixed thoroughly with an appropriate amount of ethanol in an agate mortar and then dried at 90 $^{\circ}C$ for 2 hours. The mixture was sintered at 900 $^{\circ}C$ for 2 hours and reheated at the mild reducing atmosphere 5% $H_2$ gas mixed with 95% $N_2$ gas at about 900 $^{\circ}C$ to 1250 $^{\circ}C$ for 2 hours. The photoluminescence spectra of the phosphor powders were measured by a fluorescent spectrophotometer. The crystal structure of phosphor powders were investigated by X-ray diffractometer.

  • PDF

$EU^{2+}$ Activated Green Phosphor $Ba_{2}CaMgSi_{2}O_{8}:Eu^{2+}$

  • Kim, Jeong-Seog;Piao, Ji-Zhe;Choi, Jin-Ho;Cheon, Chae-Il;Park, Joo-Suk
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.97-100
    • /
    • 2004
  • We report $EU^{2+}$ activated green phosphor $Ba_{2}CaMgSi_{2}O_{8}:Eu^{2+}$. The phosphor absorbs ultroviolet radation and emits a green visible light. The phosphors were synthesized by conventional solid state reaction method. The high purity $BaCO_3$, $CaCO_3$, MgO, $SiO_2$, $Eu_{2}O_{3}$ were used as raw materials. The raw materials were mixed thoroughly with an appropriate amount of ethanol in an agate mortar and then dried at $90^{\circ}C$ for 2 hours. The mixture was sintered at $900^{\circ}C$ for 2 hours and reheated at the mild reducing atmosphere 5% $H_2$ gas mixed with 95% $N_2$ gas at about $900^{\circ}C$ to $1200^{\circ}C$ for 2 hours. The photoluminescence spectra of the phosphor powders were measured by a fluorescent spectrophotometer. The crystal structure of phosphor powders were investigated by X -ray diffractometer.

  • PDF

Effect of Chip Wavelength and Particle Size on the Performance of Two Phosphor Coated W-LEDs

  • Yadav, Pooja;Joshi, Charusheela;Moharil, S.V.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.66-68
    • /
    • 2014
  • Most commercial white LED lamps use blue chip coated with yellow emitting phosphor. The use of blue excitable red and green phosphors is expected to improve the CRI. Several phosphors, such as $SrGa_2S_4:Eu^{2+}$ and $(Sr,Ba)SiO_4:Eu^{2+}$, have been suggested in the past as green components. However, there are issues of the sensitivity and stability of such phosphors. Here, we describe gallium substituted $YAG:Ce^{3+}$ phosphor, as a green emitter. YAG structures are already accepted by the industry, for their stability and efficiency. LEDs with improved CRI could be fabricated by choosing $Y_3Al_4GaO_{12}:Ce^{3+}$ (green and yellow), and $SrS:Eu^{2+}$ (red) phosphors, along with blue chip. Also, the effect of a slight change in chip wavelength is studied, for two phosphor-coated w-LEDs. The reduction in particle size of the coated phosphors also gives improved w-LED characteristics.

Cathodoluminescence of $Mg_2$$SnO_4$:Mn,:Mn Green Phosphor under Low-Voltage Electron Excitation ($Mg_2$$SnO_4$:Mn 녹색 형광체의 저전압 음극선 발광 특성)

  • Kim, Gyeong-Nam;Jeong, Ha-Gyun;Park, Hui-Dong;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.759-762
    • /
    • 2001
  • Mg$_2$SnO$_4$having an inverse spinel structure was selected as a new host material of $Mn^{2+}$ activator. The luminescence of the $Mg_2$SnO$_4$:Mn phosphor prepared by the solid-state reaction were investigated under ultraviolet and low-voltage electron excitation. The Mn-doped magnesium tin oxide exhibited strong green emission with the spectrum centered at 500nm wavelength. It was explained that the green emission in $Mg_2$SnO$_4$:Mn phosphor is due to energy transfer from $^4T_1to ^6A_1\;of\; Mn^{2+}$ ion at tetrahedral site in the spinel structure. The optimum concentration of $Mn^{2+}$/ion exhibiting maximum emission intensity by the low-voltage electron excitation was 0.6mol%. ?

  • PDF

Development of Backlight Unit by using Red, Green, Blue CCFL (Red, Green, Blue CCFL을 이용한 Backlight Unit 개발)

  • Yang, Seung-Soo;Song, Young-Ki;Kim, Seo-Yoon;Lee, Jung-Yeal
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.414-415
    • /
    • 2006
  • At present, Characteristic of high color reproduction for LCD products needed in Display market. Therefore, The improving methods of high color reproduction are alteration of color Filter or Red, Green, Blue phosphor alteration of CCFL. But High color reproduction phosphor is short life time as compared with conventional phosphor. In this experiment, by using split the Red, Green, Blue CCFL with high color reproduction phosphor instead of conventional high color reproduction CCFL. We knew that the high color reproduction RGB split CCFL BLU has same spectrum data and chromaticity, but has long life time as manufacturing RGB split CCFL and reduce chromaticity shift following long time discharge as compared with conventional high color reproduction CCFL.

  • PDF

Fabrication of Mixed and Patterned Type of Remote Phosphors by Screen Printing Process and their Optical Properties

  • Kim, Byung-Ho;Hwang, Jonghee;Lee, Young Jin;Kim, Jin-Ho;Jeon, Dae-Woo;Lee, Mi Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.381-385
    • /
    • 2016
  • Recently, white LEDs, especially, warm white LEDs have been intensively investigated due to outstanding optical properties, long term stability and low power consumption. In this study, mixed type and patterned type of remote phosphors were prepared by screen printing process employing green and red phosphor. Each type of remote phosphor exhibited distinctive photoluminescence spectrum. For example, the mixed type of remote phosphor exhibited unique spectrum, while the patterned type showed expectable spectrum depending on the concentration of phosphors. This indicates that a small amount of red phosphor dramatically reduced the green photoluminescence in the case of mixed-type remote phosphor, whereas the effect was negligible in the patterned-type remote phosphor. The possibility of undesirable chemical reaction was further investigated by using scanning electron microscopy and X-ray diffraction.

Green electroluminescence from ZnS:Cu alternating current thick film electroluminescent devices

  • Sharma, Gaytri;Han, Sang-Do;Khatkar, S.P.;Rhee, Young-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1327-1330
    • /
    • 2005
  • The color shifting from yellow to green of electroluminescent emission from ZnS: Cu alternating current thick film electroluminescent (ACTFEL) devices has been achieved by changing the Mg composition in the phosphor layers. The commission international de l'Eclairge (CIE) color co-ordinates of the ACTFEL devices prepared from these phosphor layers show a shifting from yellow (x=0.45, y=0.52) towards green (x=0.36, y=0.58). The various parameters influencing the emission intensity were also investigated.

  • PDF

Luminescence Properties of Ba3Si6O12N2:Eu2+ Green Phosphor

  • Luong, Van Duong;Doan, Dinh Phuong;Lee, Hong-Ro
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.5
    • /
    • pp.211-217
    • /
    • 2015
  • To fabricate white LED having a high color rendering index value, red color phosphor mixed with the green color phosphor together in the blue chip, namely the blue chips with RG phosphors packaging is most favorable for high power white LEDs. In our previous papers, we reported on successful syntheses of $Sr_{2-}$ $Si_5N_8:Eu^{2+}$ and $CaAlSiN_3$ phosphors for red phosphor. In this work, for high power green phosphor, greenemitting ternary nitride $Ba_3Si_6O_{12}N_2:Eu^{2+}$ phosphor was synthesized in a high frequency induction furnace under $N_2$ gas atmosphere at temperatures up to $1400^{\circ}C$ using $EuF_3$ as a raw material for $Eu^{2+}$ dopant. The effects of molar ratio of component and experimental conditions on luminescence property of prepared phosphors have been investigated. The structure and luminescence properties of prepared $Ba_3Si_6O_{12}N_2:Eu^{2+}$ phosphors were investigated by XRD and photoluminescence spectroscopy. The excitation spectra of $Ba_3Si_6O_{12}N_2:Eu^{2+}$ phosphors indicated broad excitation wavelength range of 250 - 500 nm, namely from UV to blue region with distinct enhanced emission spectrum peaking at ${\approx}530nm$.

Study on the Optical Characteristics of the Green Phosphor for PDP Application (PDP용 녹색 형광체의 광 특성 개선에 관한 연구)

  • Han, Bo Yong;Yoo, Jae Soo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.150-156
    • /
    • 2009
  • Plasma Display Panels(PDPs) require to have improved luminous efficiency, low manufacturing cost, and high image quality to compete with other flat display devices such as Liquid Crystal Displays(LCDs) and organic light-emitting diodes(OLEDs). In addition, the diversity of product line-up may be needed for high market share. In this paper, the optical characteristics of typical green phosphor for PDP application are reviewed and the problem-based solution will be proposed. We also shortly describe the principle of 3D-PDPs which are promising. Then, the requirement of green phosphor for 3D-PDP application is summarized and research achievement, as of now, is described. The typical problems of $Zn_2SiO_4:Mn$ phosphor, which is the most well-known, are the negatively charged surface property and the long decay time, which leads to unstable discharge in green cell and afterimage. These problems were solved by coating the phosphor surface with metallic oxide. It was found that $Al_2O_3$ would be the best material for $Zn_2SiO_4:Mn$ phosphor. It gives longevity as well as low operating voltage due to the charging effect in green cells. Also, new phosphors, $(Y,\;Gd)Al_3(BO_3)_4:Tb$ and $(Mg,\;Zn)Al_2O_4:Mn$ phosphor are proposed for increasing the luminance and reducing the decay time, which are capable to apply for 3D-PDP application.