• Title/Summary/Keyword: green light sources

Search Result 98, Processing Time 0.025 seconds

A Study on the Various Light Source Radiation Conditions and use of LED Illumination for Plant Factory (식물공장 각종광원의 방사조건과 LED조명의 활용에 관한 연구)

  • Yoon, Cheol-Gu;Choi, Hong-Kyoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.14-22
    • /
    • 2011
  • The artificial lights to be introduced for the plant factories is requiring the artificial light resources with minimizing the energy consumption to reduce the greenhouse gases which is a major cause of global warming, and maximizing the efficiency in photosynthesis effect light-wave range, in which the plants can be greatly grown and developed, and having the signal light-wave range for forming the light types. the best growing and developing environment for the plants has recently realized with utilizing the LED(Lighting Emitting Diode) lamps, as a environment-friendly green lamps, which can elevating the light efficiency with using only the specific light wave range. In this study, to provide the necessary lights for the full artificial light type of the plant factory, the following research/study and experiments has been conducting. experiments of the spectrum for each light sources, and LED, The intensity of illumination, Irradiance, Photosynthesis Photon Flux Density.

Effect of LED LightIrradiation on the Mycelial Growth and Fruit Body Development of Hypsizygus Marmoreus (LED 광원이 느티만가닥버섯 균의 균사 생장과 자실체 생육에 미치는 영향)

  • Kim, M.K.;Lee, Y.K.;Seo, G.S.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.1
    • /
    • pp.99-112
    • /
    • 2020
  • A edible mushroom, Hypsizygus marmoreus is commercially cultivated. However, the researches of cultivation and physiological characteristics were not conducted in Korea. In this study, we conducted on artificial cultivation of H. marmoreus and elucidated the effect of light on the mycelial growth and fruit body development using LED light sources with different wavelength; blue (peak wave length 460nm), green(peak wave length 530nm), yellow(peak wave length 590nm), red(peak wave length 630nm), and white as positive control. Mycelial growth of H. marmoreus strains were inhibited about 30~40% in inhibition ratio under the illumination with blue, green, yellow LED light. However, red LED light was not inhibited. Elongation of stipe was effective under the long wave length such as yellow and red light. Abnormal fruit body was produced under the long wavelength and dark. However, development of pileus was effective under the short wavelength such as green and blue light. Also, as a result of cultivation with mixed light for high quality and harvest, many effective numbers and yields of fruiting bodies were obtained in the mixed treatment of blue and white light, and pileus developed well.

Vegetative Growth Characteristics of Phalaenopsis and Doritaenopsis Plants under Different Artificial Lighting Sources

  • Lee, Hyo Beom;An, Seong Kwang;Lee, Seung Youn;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • This study was conducted to determine the effects of artificial lighting sources on vegetative growth of Phalaenopsis and Doritaenopsis (an intergeneric hybrid of Doritis and Phalaenopsis) orchids. One - month - old plants were cultivated under fluorescent lamps, cool - white light - emitting diodes (LEDs), or warm - white LEDs at 80 and $160{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The blue (400 - 500 nm) : green (500 - 600 nm) : red (600 - 700 nm) : far - red (700 - 800 nm) ratios of the fluorescent lamps, cool-white LEDs, and warm-white LEDs were 1 : 1.3 : 0.8 : 0.1, 1 : 1.3 : 0.6 : 0.1, and 1 : 2.7 : 2.3 : 0.4, respectively. Each light treatment was maintained for 16 weeks in a closed plant-production system maintained at $28^{\circ}C$ with a 12 h photoperiod. The longest leaf span, as well as the leaf length and width of the uppermost mature leaf, were observed in plants treated with warm-white LEDs. Plants grown under fluorescent lamps had longer and wider leaves with a greater leaf span than plants grown under cool-white LEDs, while the maximum quantum efficiency of photosystem II was higher under cool-white LEDs. The vegetative responses affected by different lighting sources were similar at both 80 and $160{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Leaf span and root biomass were increased by the higher light intensity in both cultivars, while the relative chlorophyll content was decreased. These results indicate that relatively high intensity light can promote vegetative growth of young Phalaenopsis plants, and that warm - white LEDs, which contain a high red-light ratio, are a better lighting source for the growth of these plants than the cool-white LEDs or fluorescent lamps. These results could therefore be useful in the selection of artificial lighting to maximize vegetative growth of Phalaenopsis plants in a closed plant - production system.

Optical Characteristics of a Flexible Back-Light Unit with Plasma Discharge Clusters

  • Goo, Gyo-Uk;Ryu, Si-Hong;Lee, Seung-Eui;Ahn, Sung-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.189-192
    • /
    • 2011
  • A flexible back-light unit (FBLU) is fabricated by embedding plasma discharge clusters in a flexible polymer matrix. The brightness uniformity of an FBLU was measured for various combinations of optical sheets and compared with the simulated results for various bending angles. A gap between light sources causes distinctive integrated brightness curves which have two inflection points depending on bending angle. The brightness distribution of a simulated BLU was in good agreement with that of an actual plasma BLU except for a dark area that appeared at the center of the simulated BLU. The real and simulated BLUs both clearly showed an angle dependency caused by mirror images located between point light sources. On the basis of these results, it is suggested that these mirror-like images could be a major factor in determining the characteristics of FBLUs.

Dynamic Range Reconstruction Algorithm for Smart Phone Camera Pulse Measurement Robust to Light Condition (조명 조건에 강건한 스마트폰 카메라 맥박 측정을 위한 다이내믹 레인지 재구성 알고리즘)

  • Park, Sang Wook;Cha, Kyoungrae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Recently, handy pulse measurement method was introduced by using smart phone camera. However, measured values are not consistent with the variations of external light conditions, because the external light interfere with dynamic range of captured pulse image. Thus, adaptive dynamic range reconstruction algorithm is proposed to conduct pulse measurement robust to light condition. The minimum and maximum values for dynamic ranges of green and blue channels are adjusted to appropriate values for pulse measurement. In addition, sigmoid function based curve is applied to adjusted dynamic range. Experimental results show that the proposed algorithm conducts suitably dynamic range reconstruction of pulse image for the interference of external light sources.

Red and Blue Photons Can Enhance the Production of Astaxanthin from Haematococcus pluviatis

  • Kim, Z-Hun;Lee, Ho-Sang;Lee, Choul-Gyun
    • ALGAE
    • /
    • v.24 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • The unicellular green alga, Haematococcus pluvialis, accumulates the highest level of astaxanthin among knownastaxanthi.n-producing organisms. Light is the most important factor to induce astaxanthin by H. pluvialis. BIue andred LEDs, whose ${\lambda}_{max}$'s are 470 and 665 nm, respectively, were used for internally illuminated light sources.Fluorescent lamps were also used for both internal and external illumination sources. The astaxanthin levels in thesevarious lighting systems were analyzed and compared each other. The cultures under internally illuminated LEDsaccumulaled 20% more astaxanthin than those under fluorescent lamp. Furthermore, LEDs generated much lessheat than the fluorescent lamps, which gives one more reason for the LEDs being a suitable internal Light source forastaxanthin induction. The results reported here would lead novel designs of photobioreactors with improvementsof illumination methods for high level of astaxanthm production. The maximum astaxanthin concentrations as wellas the astaxanthin yield per supplied photon were increased by at least 20% when blue or red LEDs were supplied.

Effects of mixed LED light sources on the fruiting body growth of oak mushroom (Lentinula edodes) 'Nongjingo' (LED 혼합광이 표고 '농진고' 자실체의 생육에 미치는 영향)

  • Park, Youn-JIn;Oh, Tae-Seok;Cho, Young-Koo;Kim, Chang-Ho;Kim, Tae-Kwon;Jang, Myoung-Jun
    • Journal of Mushroom
    • /
    • v.15 no.4
    • /
    • pp.259-263
    • /
    • 2017
  • In this study, we investigated the morphological characteristics and antioxidant ability of mushroom cultivar Lentinula edodes 'Nongjingo' fruiting bodies after exposure to various light conditions. Color differences between mushrooms treated with mixtures of LED light revealed that mushrooms displayed lighter color shades when compared to the control group (fluorescent light treated mushrooms). Redness increased and yellowness decreased after exposure to all treatments other than the fluorescent control. Measurement of growth characteristics of 'Nongjingo' fruiting bodies showed increases after exposure to all mixed LED treatments. In addition, the uniformity of fruiting bodies was higher when using LED light compared to fluorescent light. The measurement of stem diameters did not show a significant difference between the treatments, however, diameters were slightly larger with exposure to white-green LED. Moreover, stem length was longer in the mixed LED treatments when compared to those exposed to fluorescent light. Examination of the ratio of stem diameter to stem length revealed that the diameter of the stem was greater than the length. The antioxidant activity of water extracts made from Nongjingo fruiting bodies grown under mixed LED conditions was compared to those from mushrooms grown under fluorescence light conditions. The highest antioxidant activity was observed from mushrooms treated with white LED; however, no significant difference was found between mushrooms exposed to white-green LED compared to white-blue LED. The treatment showed higher antioxidant ability than vitamin C. Our results confirm that treatment of white LED and white-blue LED affects the growth and antioxidant ability of Nongjingo mushroom fruiting bodies.

Development of an Optical Probe for Measuring Blood Flow in Dental Pulp (치수혈류 측정을 위한 광 프로브 개발)

  • Jang, Kyung-Hwan;Choi, Joon-Yul;Koo, Jeong-Mo;Kwon, Min-Kyung;Kim, Deok-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1204-1209
    • /
    • 2012
  • To diagnose dental pulp vitality, electric pulp tester has been widely used, which is a method to test condition of nerve. However, especially in the case of patients with trauma, nerve desensitization could temporarily occur even though nerve might be recovered by blood flow within the pulp later, which implies that blood flow in dental pulp is also an important factor for diagnosing vitality. This paper described the development of a probe that relatively measured blood flow in dental pulp using photoplethysmography (PPG). The probe emits four different wavelength light sources including three visible and an infrared light. We tested which light source detect sensitively the blood flow in dental pulp. As a result, green light had the largest peak to peak voltage and the power spectrum among different wavelengths.

Effect of Artificial Light Source on the Growth and Quality of Lettuce

  • Hyeon-Do Kim;Yeon-Ju Choi;Eun-Young Bae;Byoung-Il Je;Seung-Min Song;Jum-Soon Kang
    • Journal of Environmental Science International
    • /
    • v.33 no.6
    • /
    • pp.383-402
    • /
    • 2024
  • Variations in lettuce growth and quality were observed depending on the type of artificial light source. The RGB LED treatment resulted in thick leaf development, leading to higher fresh weight, dry weight, and relative growth rates. Two cultivars, "Tomalin" and "seonpunggold," exhibited increased anthocyanin content and dark red leaf color under conditions of RGB LED treatment. Additionally, they exhibited high chlorophyll content under conditions of RGB LED and RGBFR LED treatments. Particularly, under Red LED treatment, the plants showed elongated leaves with narrow widths, resulting in a higher leaf shape index and a tendency towards leaf curling. Therefore, RGB LED lighting which appropriately blends red, blue, and green lights, is more effective than single lighr sources at improving lettuce growth and quality.

Photo-Transistors Based on Bulk-Heterojunction Organic Semiconductors for Underwater Visible-Light Communications (가시광 수중 무선통신을 위한 이종접합 유기물 반도체 기반 고감도 포토트랜지스터 연구)

  • Jeong-Min Lee;Sung Yong Seo;Young Soo Lim;Kang-Jun Baeg
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.143-150
    • /
    • 2023
  • Underwater wireless communication is a challenging issue for realizing the smart aqua-farm and various marine activities for exploring the ocean and environmental monitoring. In comparison to acoustic and radio frequency technologies, the visible light communication is the most promising method to transmit data with a higher speed in complex underwater environments. To send data at a speedier rate, high-performance photodetectors are essentially required to receive blue and/or cyan-blue light that are transmitted from the light sources in a light-fidelity (Li-Fi) system. Here, we fabricated high-performance organic phototransistors (OPTs) based on P-type donor polymer (PTO2) and N-type acceptor small molecule (IT-4F) blend semiconductors. Bulk-heterojunction (BHJ) PTO2:IT-4F photo-active layer has a broad absorption spectrum in the range of 450~550 nm wavelength. Solution-processed OPTs showed a high photo-responsivity >1,000 mA/W, a large photo-sensitivity >103, a fast response time, and reproducible light-On/Off switching characteristics even under a weak incident light. BHJ organic semiconductors absorbed photons and generated excitons, and efficiently dissociated to electron and hole carriers at the donor-acceptor interface. Printed and flexible OPTs can be widely used as Li-Fi receivers and image sensors for underwater communication and underwater internet of things (UIoTs).