• Title/Summary/Keyword: green building envelope

Search Result 26, Processing Time 0.029 seconds

Comparison of the Building Envelope Design Elements between Green Building Design Guidelines and Green Building Certification Criteria - Focus on public institution relocation projects - (녹색건축물 디자인가이드라인과 녹색건축 인증 비교를 통한 외피계획요소에 관한 연구 - 공공기관 지방이전 건축물을 중심으로 -)

  • Kim, So-Young;Hwang, Sung-Pil;Oh, Joon-Gul
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.61-68
    • /
    • 2014
  • Due to rapid climate changing and the need for energy conservation, environment friendly initiatives have emerged, and regulations to support establishment of green structures in construction have been legislated and enacted. In this study, the supporting of green build method act for rapid climate change and energy conservation. Using green build method, protecting surrounding ecosystem and developing green building continuously, I suggest alternative for protection of the environment. Identifies Envelope Design Elements among various construction Green Building Design Guidelines. Green buildings that we extract the Green Building envelope design from Design Guideline, select the object building through the green buildings examples of public institution relocation projects. Since then analyzes the planned schematic design and Green Envelope Design Elements and Green Building Certification(G-SEED). So, that future directions for planning correlation of Green Building and Design Guidelines about Green Design Elements Can be presented.

The Energy Saving Effect and Economic Assessment of Office Building according to the Building Envelope Remodeling (사무소 건물의 외피 리모델링에 따른 에너지절감효과 및 경제성 분석)

  • Choi, Seon woo;Kim, Ji Yeon;Park, Hyo soon;Kim, Jun Tae
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.85-92
    • /
    • 2012
  • The Korean government has introduced building regulations with improved energy conservation measures, including higher insulation levels for building envelope. However, there are many existing buildings that tend to consume more energy for heating and cooling than new buildings, as they were built under the former regulations with relatively higher U-values of walls and glazing. In order to improve energy efficiency in existing buildings, green remodelling of building envelope and building services are required. For existing buildings, building services improvements have been achieved through energy service company(ESCO), but much attention has not been paid to building envelope improvements with various reasons, such as uncertainty of energy saving effect design issues and costs. The aim of this study is to evaluate the impact of building envelope improvements in a typical commercial building on its heating and cooling energy loads. The results show that the improvement of glazing with lower U-values has the highest energy saving effects, followed by wall, roof and floor, under the condition of same level of insulation improvements. However, high insulated glazing increased LCC because of higher initial investment costs.

Issues and Standardization technology in Automatic Extraction to Create an Planar Figure of Envelope based on BIM (BIM 기반 외피전개도 자동추출의 고려사항 및 표준화 연구)

  • Park, Young-Joon;Kim, Chang-Min;Park, Byung-Yoon;Choi, Chang-Ho
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.591-605
    • /
    • 2018
  • The information on the planar figure of the building envelope is commonly required in various criteria related to the energy performance of the building. However, since the method of creating varies depending on each criterion, the information displayed in the planar figure of the building envelope differs considerably according to the person making the figure. In this regard, this study sought to derive the commonly required information for the unification of the information included in the planar figure of the building envelope, and thus examine the standardization of the planar figure of the building envelope based on BIM. Towards this end, 1) the required information about the planar figure of the building envelope was derived through the literature review and case analysis results submitted to the energy performance evaluation agencies, and 2) the standardized output technology using IFC was investigated based on the required information. Therefore, it is expected that the findings of this study will help to create a general-purpose planar figure for the building envelope, and this study can serve as the preliminary research for automatically extracting the information on the planar figure of the building envelope.

A Study on the Establish Environmental Impact of Database of the Envelope System for Green Remodeling of Apartment Housing (공동주택의 그린 리모델링을 위한 외피시스템 환경영향 DB 구축에 관한 연구)

  • Lee, Jong Geon;Tae, Sung Ho;Chae, Chang-U;Kim, Rak Hyun
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.73-79
    • /
    • 2016
  • Purpose: In order to improve the energy performance of existing buildings, so actively promoted green remodeling business. Also, improvement of the performance of envelope system of apartment housing is an absolute. The purpose of implementation of the data base and application plan of the envelope system for green remodeling of apartment housing. Method: For this study, It proposed a classification system of green remodeling envelope system constructed actual to select the applicable representative method and input material of apartment housing for green remodeling. In this study, divided into construction waste processing stage and production phase of the material for the boundary of the system, and implementation the classification system of the envelope system for applicable green remodeling. For this, established 6 environmental impact categories database. Result: As a result of various suggestions were available for case study research, alternative combinations of existing combinations than six kinds of environmental impact insulation system with superior input materials combining 96 kinds, window system, 12 kinds for determining the applicability of the established database. Depending on the account for a large proportion if compared to the detailed analysis of the environmental impact resulting from the production phase and disposal phase was analyzed that the operating management of the necessary input materials. Is considered that the economic performance and integrated energy performance required by the applicable public housing green remodeling evaluation techniques considered for future improvements insulation sheath.

A Study on the Building Energy Efficiency Rating Changes by Enhanced Thermal Insulation Performance of Building Envelope Standards in Apartment Houses (공동주택에서 외피단열성능기준 강화에 따른 건축물에너지 효율등급 변화에 관한 연구)

  • Cho, Yeong Uk;Park, Sun Hyo;Joung, Kwang Sub
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • This study aimed to compare the primary heating energy consumption of regional apartment houses based on the enhanced thermal insulation performance of building envelope standards. The difference of the heating energy consumption based on the enhanced thermal insulation performance of building envelope standards in the southern region, the largest regional difference in primary heating energy consumption, is $10.3kWh/(m^2{\cdot}year)$. The difference of the heating energy consumption based on the enhanced thermal insulation performance of building envelope standards in the central region is $8.0{\sim}8.5kWh/(m^2{\cdot}year)$ and that of the Jeju region is $0.5kWh/(m^2{\cdot}year)$. These energy consumption differences do not result in building energy efficiency ratings changing. The building energy efficiency ratings have the possibility to be changed.

The Study on Thermal Performance Evaluation of Building Envelope with VIPs

  • Jeon, Wan-Pyo;Kwon, Gyeong-Jin;Kim, Jin-Hee;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.5-10
    • /
    • 2016
  • Purpose: The energy consumption in buildings has continuously increased in some countries and it reaches almost 25% of the total energy use in korea. Therefore there are various efforts to minimize energy consumption in buildings, and the regulations on building envelope insulation have been tightened up gradually. To satisfy the building regulation, the use of vacuum insulation panels(VIPs) is increasing. VIP is a high performance insulation materials, so that it can be thinner than conventional insulation material. When VIP is applied in a building, it may cause thermal bridge, which occurs due to very low thermal conductivity compared to other building materials and the envelope of VIPs. Method: This study designed the capsulized VIPs using conventional insulation for reduction of the thermal bridge. Then designed VIPs were applied to a wall. The linear thermal transmittance and the effective thermal conductivity were analyzed by HEAT2 simulation program for two dimensional steady-state heat transfer. The result compared with a wall with non-capsulized VIPs. Result: It analyzed that the wall with capsulized VIPs had lower linear thermal transmittance and reduced the difference of the effective thermal transmittance with one dimensional thermal transmittance compared to that of the wall with non-capsulized VIPs.

Evaluation of the Energy Efficiency Rating in small office building according to the Thermal Performance of Building Envelope (소규모 업무용 건물의 외피 열성능에 따른 건축물 에너지효율등급 평가 연구)

  • Kim, Sang-A;Hong, Won-Hwa;Park, Hyo-Soon
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.65-70
    • /
    • 2012
  • Each country has implemented various environmental policies to prevent natural disasters and destruction of ecosystem caused by global wanning. The republic of Korea also was performed building energy efficiency rating certification system as part of paradigm of 'Low carbon green growth' since 2010. However, the status on the building energy efficiency rating certification system has not been analyzed. In this study, We analyzed the elements affecting the energy efficiency of small office buildings focusing the status and certification cases of the building energy efficiency rating system. As a result, it is judged that thermal performance contribution of the building envelope is not high in the buildings certificated the first grade of the building energy efficiency rating system.

Investigation and Analysis of Patents for the Thermal Bridge Breaker in Green Buildings (그린건축을 위한 열교차단 특허기술의 조사 및 분석 연구)

  • Kim, Young-Ho;Kim, Hyung-Joon;Lee, Hee-Young
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.13 no.2
    • /
    • pp.35-43
    • /
    • 2013
  • The green building is one of biggest factors to go the goal of energy saving and environmental conservation, "reduction of energy consumption, friendly energy technology, recycling of resource, and environmental pollution reduction technology. The purpose of these green buildings realized by the energy-saving technology such as the thermal bridge breaker(or thermal bridge block). Thermal bridges are localized elements that penetrate insulated portions of building envelope that results in heat loss. The purpose of this paper is to describe the technical interactions for patents of a thermal bridge breaker(TTB) used in green building practices, and be subject to investigation to TTB in the leading countries, that is, United State, Europe Union, Japan, and Korea. As a result, there are four TTB categories(roof, wall-slab connection, opening, footing) in house or building. The TTB categories is remarkable technology that is apparatus in slab-wall joints and sealing element of opening frame in walls.

Wind loading on trees integrated with a building envelope

  • Aly, Aly Mousaad;Fossati, Fabio;Muggiasca, Sara;Argentini, Tommaso;Bitsuamlak, Girma;Franchi, Alberto;Longarini, Nicola;Crespi, Pietro;Chowdhury, Arindam Gan
    • Wind and Structures
    • /
    • v.17 no.1
    • /
    • pp.69-85
    • /
    • 2013
  • With the sustainability movement, vegetated building envelopes are gaining more popularity. This requires special wind effect investigations, both from sustainability and resiliency perspectives. The current paper focuses on wind load estimation on small- and full-scale trees used as part of green roofs and balconies. Small-scale wind load assessment was carried out using a wind tunnel testing in a global-effect study to understand the interference effects from surrounding structures. Full-scale trees were investigated at a large open-jet facility in a local-effect study to account for the wind-tree interaction. The effect of Reynolds number combined with shape change on the overall loads measured at the base of the trees (near the roots) has been investigated by testing at different model-scales and wind speeds. In addition, high-speed tests were conducted to examine the security of the trees in soil and to assess the effectiveness of a proposed structural mitigation system. Results of the current research show that at relatively high wind speeds the load coefficients tend to be reduced, limiting the wind loads on trees. No resonance or vortex shedding was visually observed.

Energy Sustainability of an Integrative Kinetic Light Shelf Unit

  • Han, Seung-Hoon
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.15-20
    • /
    • 2015
  • Purpose: Suggesting a working prototype of a kinetic light shelf unit and revealing its energy efficiency by a series of building performance simulations were presented. Recently, kinetic building envelope has been an emerging technology as an innovative way to control exterior building environment, but products from many researches about the facade could not been reached to the industrialization so far. That is because its initial installation, operation and maintenance costs are still too high to use for the practical field, although buildings using kinetic envelopes could decrease their energy consumption significantly. This narrow point of view needs to be reconsidered, since buildings require great amount of energies to run their functions through the whole life and using better building components can lead to achieve much more benefits in aspects of the lifecycle cost (LCC). Method: A series of certified simulation tools like Ecotect and Green Building Studio that are normally used for researches and developments in the field of architecture were utilized. Result: Based on simulation analyses, the result of the study has showed that the proposed system definitely has adaptability to the professions and positively shows practicability as advanced integrative building envelopes with renewable energy association.