• 제목/요약/키워드: greater displacement

검색결과 366건 처리시간 0.03초

Rotation Control of Shoulder Joint During Shoulder Internal Rotation: A Comparative Study of Individuals With and Without Restricted Range of Motion

  • Min-jeong Chang;Jun-hee Kim;Ui-jae Hwang;Il-kyu Ahn;Oh-yun Kwon
    • 한국전문물리치료학회지
    • /
    • 제31권1호
    • /
    • pp.72-78
    • /
    • 2024
  • Background: Limitations of shoulder range of motion (ROM), particularly shoulder internal rotation (SIR), are commonly associated with musculoskeletal disorders in both the general population and athletes. The limitation can result in connective tissue lesions such as superior labrum tears and symptoms such as rotator cuff tears and shoulder impingement syndrome. Maintaining the center of rotation of the glenohumeral joint during SIR can be challenging due to the compensatory scapulothoracic movement and anterior displacement of the humeral head. Therefore, observing the path of the instantaneous center of rotation (PICR) using the olecranon as a marker during SIR may provide valuable insights into understanding the dynamics of the shoulder joint. Objects: The aim of the study was to compare the displacement of the olecranon to measure the rotation control of the humeral head during SIR in individuals with and without restricted SIR ROM. Methods: Twenty-four participants with and without restricted SIR ROM participated in this study. The displacement of olecranon was measured during the shoulder internal rotation control test (SIRCT) using a Kinovea (ver. 0.8.15, Kinovea), the 2-dimensional marker tracking analysis system. An independent t-test was used to compare the horizontal and vertical displacement of the olecranon marker between individuals with and without restricted SIR ROM. The statistical significance was set at p < 0.05. Results: Vertical displacement of the olecranon was significantly greater in the restricted SIR group than in the control group (p < 0.05). However, no significant difference was observed in the horizontal displacement of the olecranon (p > 0.05). Conclusion: The findings of this study indicated that individuals with restricted SIR ROM had significantly greater vertical displacement of the olecranon. The results suggest that the limitation of SIR ROM may lead to difficulty in rotation control of the humeral head.

치조골이 감소된 지대치를 이용한 고정성 국소의치의 유한요소법적 응력분석 (FINITE ELEMENT STRESS ANALYSIS OF FIXED PARTIAL DENTURE SUPPORTED BY THE ABUTMENT WITH REDUCED ALVEOLAR BONE)

  • 김영기;최충국;정재헌
    • 대한치과보철학회지
    • /
    • 제33권1호
    • /
    • pp.32-47
    • /
    • 1995
  • The purpose of this study was to determine the displacement of prosthesis & abutment and the stress distribution patterns induced in the periodontium by applying force to the fixed prosthesis. Two levels of periodontal support were compared using two-dimensional finite element stress analysis after placement of 3unit or 4 unit fixed partial denture(FPD) in case of missing of the lower first molar. Concentrated vertical load was delivered at the cusp tip of the second bicuspid or the central fossa of the pontic. The following results were obtained : 1. The greater the loss of alveolar bone in abutment teeth area, the greater the displacement of FPD and the stress concentration in alveolar bone around abutment. 2. The amount and direction of displacement and distribution of stress in the 4-unit FPD was better than those in the 3-unit FPD. 3. Multiple abutments reduced the amount of mesial and downward displacement of the weaked abutments and more uniformly distributed the stresses.

  • PDF

무릎관절에서의 단계별 도수견인에 따른 견인력과 연성변이와의 관계 (Relationship between Traction Force and Elongated Displacement Under Graded Manual Traction of Knee Joint)

  • 배태수;허현;김경훈;안재용
    • 한국정밀공학회지
    • /
    • 제25권4호
    • /
    • pp.148-153
    • /
    • 2008
  • Although manual traction, one of pain therapies, was applied in clinic to relief pain, the study was rare on the manual force and displacement of ligaments at knee joint during manual traction. The aim of this study is to quantify not only manual force at knee joint but also elongated displacement of joint ligament by C-arm scanning and motion analysis. Twenty-one healthy subjects were tested with manual traction from grade I to grade III under neutral position by a physical therapist. We calculated traction force using joint farces of both hands and elongated displacement of joint ligament were measured. The results showed that traction forces by C-arm scanning analysis were averagely 1.67-fold greater than those by motion analysis, but elongated displacements were instead averagely 2.36-fold smaller than motion analysis. Finally, we could estimate relationship between traction force and elongated displacement at knee joint by two methods.

성, 기술수준 및 클럽이 골프 스윙의 운동학적 요인에 미치는 영향 (Effects of Gender, Skill Level, and Club on Kinematics of Golf Swing)

  • 권선옥;이기광
    • 한국운동역학회지
    • /
    • 제15권3호
    • /
    • pp.79-94
    • /
    • 2005
  • Because the golf swing is very complex movement, it is varied in different gender, skill level, and club. This study measured kinematic variables in golf swing regarding gender, skill level, and club types using FasTrak electromagnetic tracking system. Golf swing kinematics including time variables, linear and angular displacement variables, angular velocity variables were analyzed and compared through three-way ANOVA The results were as follows: 1. In time variables, Female and driver showed longer backswing time than male and iron. Downswing time was longer in female and nonexperts than male and experts. Backswing time over downswing time was longer in experts than nonexperts. Uncocking time was longer in male and experts than female and nonexperts. The differences were statistically significant (p<.05). 2. In displacement variables, Female and nonexperts showed greater backswing head lift than male and experts. Impact head lift was greater in female, nonexperts, and iron than male, experts, and driver. The differences were statistically significant (p<.05). Experts and driver showed greater top hip rotation angle than nonexperts and iron. Top shoulder rotation angle was greater in male, experts and driver than female, nonexperts, and iron. X-factor was greater in male, experts, and driver than female, nonexperts, and iron. Male and experts showed greater backswing hip sway than female and nonexperts. Impact hip sway was greater in male and iron than female and driver. The differences were statistically significant (p<.05). 3. In velocity variables, Experts displayed higher impact hip rotation velocity than nonexperts. Impact shoulder rotation velocity was greater in male and iron than female and driver (p<.05).

감소된 치조골 고경을 갖는 치아와 골유착성 임프랜트에 의해 지지되는 고정성 국소의치의 유한요소법적 응력분석 (A FINITE ELEMENT STRESS ANALYSIS OF FIXED PARTIAL DENTURE SUPPORTED BY OSSEOINTEGRATED IMPLANT AND THE NATURAL TEETH WITH REDUCED ALVEOLAR BONE HEIGHT)

  • 최충국;계기성;조규종
    • 대한치과보철학회지
    • /
    • 제32권2호
    • /
    • pp.296-326
    • /
    • 1994
  • The purpose of this study was to evaluate the mechanical effects when one implant fixture was connected to the natural teeth with reduced alveolar bone height. This study also examined the effects of increasing the number of abutment teeth and the effects of the intramobile connector and the titanium connector as they were inserted between the implant superstructure and the fixture. The distribution and concentration load was applied to the fixed partial denture(FPD) supported by implant and the natural teeth with reduced alveolar bone height. The stress and displacement of each element was observed and compared by the two-dimensional finite element method. The following results were obtained : 1. The greater the loss of alveolar bone in natural teeth area, the greater the displacement of FPD and the stress concentration in alveolar bone around implant, especially at the stress concentration in the mesial alveolar bone crest around implant fixture. 2. The displacement of FPD was increased more and that of implants fixture was decreased more when intramobile connector was used than titanium connector was used. Also the stress concentration in alveolar bone around implant fixture was greater when intramobile connector than titanium connector. One implication of this finding was that the difference in stiffness of implant and the natural teeth with reduced alveolar bone height could be partially compensated in case of the POM intramobile connector. 3. The amount and direction of displacement and the stress distribution of the 4-unit FPD was better than those of the 3-unit FPD. It implied that the difference of stiffness of implant and natural teeth with reduced alveolar bone height could be partially compensated in case of the 4 unit FPD.

  • PDF

근관치료를 받은 전치부에서 수복방법과 치조골높이에 따른 응력분석에 관한 연구 (STRESS ANALYSIS OF ENDODONTICALLY TREATED ANTERIOR TEETH BY ALVEOLAR BONE HEIGHT AND RESTORATION METHOD)

  • 이연재;조영곤
    • Restorative Dentistry and Endodontics
    • /
    • 제16권1호
    • /
    • pp.133-150
    • /
    • 1991
  • To study the mechanical behavior depended on the restoration method and alveolar bone height at endodontically treated teeth. a finite element model was made which was applied by four types of restoration methods and alveolar bone height on upper central incisor and then 1 Kg force was applied on each model as follows; 1) $45^{\circ}$ diagonal load on incisal edge. 2) $26^{\circ}$ diagonal load on lingual surface. and 3) horizontal load on labial surface. The author analyzed the displacement and stress of teeth and their supporting tissue by finite element method according to three type of loading conditions. The results were as follows : 1. The displacement by restoration method and the stress in dentin was found greater in restoration without a post than in that with a post. 2. The displacement and stress was found about the same when compared : A) in Resin model and PFM model applied by restoration method without a post and B) in PRC model and CPC model applied by restoration method with a post. 3. The lower alveolar bone height was. the greater was the displacement and stress. 4. The lower alveolar bone height was. the greater slightly was the stress of restoration without a post than in that with a post. 5. The stress in loading condition was the greatest in P1 in dentin and post. and was greatest in P3 in alveolar hone. 6. In the restoration method without a post. stress concentration in labial dentin was distributed to a figure of long belt in adjacent part to periodontal ligament. while in restoration method with a post. it was distributed in adjacent part to post side. And in all types of restoration method stress concentration in alveolar bone was distributed along the compact bone of labial and lingual surface.

  • PDF

Surface displacements due to tunneling in granular soils in presence and absence of geosynthetic layer under footings

  • Rebello, Nalini E.;Shivashankar, R.;Sastry, Vedala R.
    • Geomechanics and Engineering
    • /
    • 제15권2호
    • /
    • pp.739-744
    • /
    • 2018
  • This paper presents the results of numerical modeling studies on the effect of displacements of tunneling in granular soils. Presence of building loads is considered, to find displacement generated at the surface on tunnel. Effect of varying eccentricities of building is simulated, to find influence of building on vertical and horizontal displacement. Studies were carried out in two cases of with and without a geosynthetic layer installed at the bottom of the footing. Results of analysis revealed, the presence of geosynthetic layer under footing, with building placed on centre line, reduced the surface displacements compared to displacement generated without geosynthetic layer. Presence of geosynthetic layer under footing had a dominant effect in reducing displacements in high storey structures. However, when the building was shifted to greater eccentricities from centre line, presence of geosynthetic layer, led to insignificant reduction of displacements on the centre line at the surface.

경사 전극 배열을 이용한 각도방향 마이크로 구동부 제작 (Skewed Electrode Array(SEA) and Its Application as an Angular Microactuator)

  • 최석문;박성준
    • 융복합기술연구소 논문집
    • /
    • 제1권2호
    • /
    • pp.16-24
    • /
    • 2011
  • The angular electrostatic microactuator using skewed electrode array (SEA) scheme was proposed. The moving and fixed electrodes are arranged to make the driving force perpendicular to the rotating moment of arm. By changing the electrode overlap length, the magnitude of electrostatic force and stable displacement will be changed. In order to optimize the design, electrostatic FE analysis were carried out and the empirical force model was established for SEA. Simulation was performed to make the comparison between conventional actuators and SEA. The proposed SEA generates actuating torque 2 times greater than a comb-drive and stable actuator displacement 40% greater than a parallel plate type actuator. The angular electrostatic microactuator using skewed SEA scheme was designed and fabricated using SoG process.

  • PDF

Effects of implant tilting and the loading direction on the displacement and micromotion of immediately loaded implants: an in vitro experiment and finite element analysis

  • Sugiura, Tsutomu;Yamamoto, Kazuhiko;Horita, Satoshi;Murakami, Kazuhiro;Tsutsumi, Sadami;Kirita, Tadaaki
    • Journal of Periodontal and Implant Science
    • /
    • 제47권4호
    • /
    • pp.251-262
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the effects of implant tilting and the loading direction on the displacement and micromotion (relative displacement between the implant and bone) of immediately loaded implants by in vitro experiments and finite element analysis (FEA). Methods: Six artificial bone blocks were prepared. Six screw-type implants with a length of 10 mm and diameter of 4.3 mm were placed, with 3 positioned axially and 3 tilted. The tilted implants were $30^{\circ}$ distally inclined to the axial implants. Vertical and mesiodistal oblique ($45^{\circ}$ angle) loads of 200 N were applied to the top of the abutment, and the abutment displacement was recorded. Nonlinear finite element models simulating the in vitro experiment were constructed, and the abutment displacement and micromotion were calculated. The data on the abutment displacement from in vitro experiments and FEA were compared, and the validity of the finite element model was evaluated. Results: The abutment displacement was greater under oblique loading than under axial loading and greater for the tilted implants than for the axial implants. The in vitro and FEA results showed satisfactory consistency. The maximum micromotion was 2.8- to 4.1-fold higher under oblique loading than under vertical loading. The maximum micromotion values in the axial and tilted implants were very close under vertical loading. However, in the tilted implant model, the maximum micromotion was 38.7% less than in the axial implant model under oblique loading. The relationship between abutment displacement and micromotion varied according to the loading direction (vertical or oblique) as well as the implant insertion angle (axial or tilted). Conclusions: Tilted implants may have a lower maximum extent of micromotion than axial implants under mesiodistal oblique loading. The maximum micromotion values were strongly influenced by the loading direction. The maximum micromotion values did not reflect the abutment displacement values.

교정용 호선에 악간 교정력 적용시 악안면골의 초기반응에 관한 Holographic Interferometry 연구 (A STUDY OF HOLOGRAPHIC INTERFEROMETRY ON THE INITIAL REACTION OF MAXILLOFACIAL COMPLEX TO THE INTERMAXILLARY FORCES ON THE ORTHODONTIC ARCHWIRES)

  • 진익재;양원식
    • 대한치과교정학회지
    • /
    • 제24권2호
    • /
    • pp.447-476
    • /
    • 1994
  • This study was performed to evaluate the initial reaction of maxillofacial complex to the Class II intermaxillary and the anterior vertical elastic forces on the six types of archwires including multiloop edgewise arch wires(MEAW). A human dry skull was used for this purpose and this investigation was done by holographic interferometry. Based on such investigation, the fringe pattern and the number of fringes of each condition were compared and analyzed. The findings of this study were as follows: 1. As the orthodontic forces increased, the amount of displacement increased. 2. As the orthodontic forces were applied, the fringes were shown not only in the teeth and the maxilla but also in the adjacent bones, i.e., temporal bone, zygomatic bone, nasal bone, frontal bone and sphenoid bone. And the direction of fringe pattern and the number of fringes were different from each other by the sutures. 3. As the long Class II elastic forces were applied, the backward-downward displacements of the anterior teeth and the maxilla were shown, and backward displacement of the former were grater than those of the latter. And backward displacements were greater by the long Class II elastic forces than by the short Class II elastic forces. 4. As the anterior vertical elastic forces were applied, downward displacements of the anterior teeth and the maxilla were shown, and the downward displacements of the former were greater than those of the latter relatively. 5. The downward displacements of the anterior area to the anterior vertical elastic forces of the MEAW were greater than those of other archwires. In addition, the more tip-back bend was applied, the more displacement was seen. 6. As the Class II intermaxillary forces and the enough anterior vertical elastic forces were applied on the MEAW with tip-back bend, there was an intrusive effect of the posterior teeth.

  • PDF