• Title/Summary/Keyword: gravity modeling

Search Result 191, Processing Time 0.024 seconds

Toward precise and accurate modeling of matter clustering in redshift space

  • Oh, Minji
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.40.3-40.3
    • /
    • 2018
  • This dissertation presents the results on two-dimensional Redshift space distortion (hereafter RSD) analyses of the large-scale structure of the universe using spectroscopic data and on improvement of modeling of the RSD effect. RSD is an effect caused by galaxies' peculiar velocity on their clustering feature in observation along the line of sight and is thus intimately connected to the growth rate of the structure in the universe, from which we can test the origin of cosmic acceleration and Einstein's theory of gravity at cosmic scales in the end. However, there are several challenges in modeling precise and accurate RSD effect, such as non-linearities and the existence of an exotic component, e.g. massive neutrino. As part of endeavors for modeling more precise and accurate galaxy clustering in redshift space, this dissertation includes a series of works for this issue. (More detailed descriptions were omitted.)

  • PDF

Do Roads Enhance Regional Trade? Evidence Based on China's Provincial Data

  • RAHMAN, Imran Ur;SHARMA, Buddhi Prasad;FETUU, Enitilina;YOUSAF, Muhammad
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.657-664
    • /
    • 2020
  • We investigate the impact of roads and highways within the provinces on the regional trade of China using the augmented Gravity Model and theory of modeling trade. We take a panel data covering 31 provinces of China over 20 years period (1998-2017) for the estimations. We apply ARMA-OLS model, fixed and random effects, and robust findings by Hausman test. The results imply that road and highway lengths within the provinces have a significantly positive impact on the value of the province-wise exports. The positive impact is due to the fact the increased coverage of roads and highways increase accessibility to resources and mobility of goods and services within the regions. Moreover, employment in the transportation sector, per capita GDP and population of the provinces also illustrate positive and significant influence on regional exports and trade. The impact of China's WTO accession on regional exports has been positive, while the financial crisis has had a negative impact. The year dummies show that, in the years following the financial crisis, China was able to regress from the external shock as trade within the provinces increased. The increase in exports after financial crisis is mainly due to the government policies and support to every province.

Modeling of a Two Arm Flexible Robot in Gravity (중력장에서 두개의 탄성팔을 가지는 로보트의 모델링)

  • 오재윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1075-1088
    • /
    • 1992
  • This paper presents techniques used to model a two arm experimental robot. Both arms are compliant and the robot operates in a vertical plane and is therefore influenced by gravity. The robot is being built to study different control strategies for robots containing compliant members. The system is built with extremely flexible members. This limits the required bandwidth of the control electronics, and mimics the flexible motions that are observed for stiffer faster robots. The objective of this paper is to develop a reduced order model of the robot system and to experimentally validate the model. Validation requires that the model includes gravitational effects. Therefore, an assumed modes model is developed which facilitates modeling of gravitational effects. In order to select the order and mode shapes for the model, an analytical solution is derived for a linearized continuous model. This is compared to the assumed modes model to determine the number of mode shapes needed to model the system. The final model, which includes shortening effects, correlates very well with experimental results.

Using SG Arrays for Hydrology in Comparison with GRACE Satellite Data, with Extension to Seismic and Volcanic Hazards

  • Crossley David;Hinderer Jacques
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.31-49
    • /
    • 2005
  • We first review some history of the Global Geodynamics Project (GGP), particularly in the progress of ground-satellite gravity comparisons. The GGP Satellite Project has involved the measurement of ground-based superconducting gravimeters (SGs) in Europe for several years and we make quantitative comparisons with the latest satellite GRACE data and hydrological models. The primary goal is to recover information about seasonal hydrology cycles, and we find a good correlation at the microgal level between the data and modeling. One interesting feature of the data is low soil moisture resulting from the European heat wave in 2003. An issue with the ground-based stations is the possibility of mass variations in the soil above a station, and particularly for underground stations these have to be modeled precisely. Based on this work with a regional array, we estimate the effectiveness of future SG arrays to measure co-seismic deformation and silent-slip events. Finally we consider gravity surveys in volcanic areas, and predict the accuracy in modeling subsurface density variations over time periods from months to years.

Effect of modeling assumptions on the seismic behavior of steel buildings with perimeter moment frames

  • Reyes-Salazar, Alfredo;Soto-Lopez, Manuel Ernesto;Bojorquez-Mora, Eden;Lopez-Barraza, Arturo
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.183-204
    • /
    • 2012
  • Several issues regarding the structural idealization of steel buildings with perimeter moment resisting steel frames (MRSFs) and interior gravity frames (GFs) are studied. Results indicate that the contribution of GFs to the lateral structural resistance may be significant. The contribution increases when the stiffness of the connection of the GFs is considered and is larger for inelastic than for elastic behavior. The interstory shears generally increase when the connections stiffness is taken into account. Resultant stresses at some base columns of MRSFs also increase in some cases but to a lesser degree. For columns of the GFs, however, the increment is significant. Results also indicate that modeling the building as planes frames may result in larger interstory shears and displacements and resultant stresses than those obtained from the more realistic 3-D formulation. These differences may be much larger when semi-rigid (SR) connections are considered. The conservativism is more for resultant stresses. The differences observed in the behaviour of each structural representation are mainly due to a) the elements that contribute to strength and stiffness and b) the dynamics characteristics of each structural representation. It is concluded that, if the structural system under consideration is used, the three-dimensional model should be used in seismic analysis, the GFs should be considered as part of the lateral resistance system, and the stiffness of the connections should be included in the design of the GFs. Otherwise, the capacity of gravity frames may be overestimated while that of MRSFs may be underestimated.

Seismic Performance Evaluation of Inverted V Braced Steel Frames with Considering P-Δ Effects: A Case Study (P-Δ 효과를 고려한 역 V형 철골 가새골조의 내진성능평가: 사례연구)

  • Lee, Cheol-Ho;Kim, Jeong-Jae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.97-103
    • /
    • 2004
  • Most of the columns in centrally braced steel frame buildings are usually designed as the gravity columns to reduce connection cost. For a rational seismic performance evaluation of centrally braced steel frame buildings, it is important to properly incorporate in the analysis  the P-${\Delta}$ effects arising from the gravity columns. An effective scheme for the P-${\Delta}$ effects modeling due to the gravity columns was illustrated based on the concept of fictitious leaning column. Seismic performance evaluation of inverted V braced steel frames with or without P-${\Delta}$ effects modeling was conducted by following the FEMA 273 NSP (Nonlinear Static Procedure). The problem in estimating dynamic P-${\Delta}$ modification factor (C3) in FEMA 273 was discussed. The results of this study indicated that the P-${\Delta}$ effects should be included in the seismic performance evaluation of centrally braced steel frames. This study also showed that the inverted V braced frames, retrofitted by applying the tie bars to redistribute the inelastic demand over the height of the building, exhibit significantly improved seismic performance.

Application of Mutiple Geophysical Methods in Investigating the Lava Tunnel of Manjanggul in Cheju Island (제주도 만장굴에 대한 복합 지구물리탐사 기법의 적용)

  • Kwon, Byung-Doo;Lee, Heui-Soon;Oh, Seok-Hoon;Lee, Chun-Ki
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.535-545
    • /
    • 1998
  • Various geophysical methods have been applied to the survey of the lava tunnel of Manjanggul in Cheju Island to study the effectiveness of each method in investigating underground tunnels. The surveys employing gravity, magnetic, electrical, AMT and VLF methods were carried out along seven profiles across the Manjanggul; especially, all the five methods were used on one representative profile. Several aspects of different methods pertinent to their use in investigation of underground tunnels have been noted. The electrical method employing the dipole-dipole array appeared to be the most effective one among five methods. Therefore, we have tested the electrical method more carefully by using various electrode spacings, and obtained successful resistivity sections showing the existence of lava tunnels. The gravity method provided relatively successful responses associated with the tunnel although the gravity readings were contaminated by wind blowing during the survey. The gravity data were also useful for the quantitative modeling study. The magnetic data were also successful in delineating the tunnel qualitatively. The AMT data were not successful because the used frequency band was not appropriate in detecting very shallow target. The VLF data were severely influenced by the neighboring noise sources such as power lines and were not successful in detecting the tunnel responses. The comprehensive result of electrical, gravity and magnetic surveys suggests that undiscovered lava tunnels may exist adjacent to the Manjanggul.

  • PDF

Modeling the Effect of Geology on Uplift in Concrete Gravity Dam Foundations with the Discontinuous Deformation Analysis (불연속 변형 해석을 통한 콘크리트 중력댐 기초에 작용하는 부양력에 대한 지질구조의 영향 모델링)

  • Kim, Yong-Il
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.304-315
    • /
    • 2003
  • In this paper, the DDA method with a new hydro-mechanical algorithm is used to study the effect of rock discontinuities on uplift and seepage in concrete gravity dam foundations. This paper presents an alternative method of predicting uplift and seepage at the base of concrete gravity dams. A sensitivity analysis was carried out to study the importance of several parameters on dam stability such as the orientation, spacing, and location of discontinuities. The study shows that joint water flow and adverse geological conditions could result in unusual uplift at the base of concrete gravity dams, well in excess of what is predicted with the classical linear or hi-linear pressure assumption. It is shown that, in general, the DDA program with the hydro-mechanical algorithm can be used as a practical tool in the design of gravity dams built on fractured rock masses.

Interpretation of Subsurface Structure by 2-D Gravity Modeling Study (중력탐사를 이용한 2차원 Modelling study에 의한 지질구조 해석)

  • Wee, Soo-Meen;Doh, Seong-Jae
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.409-419
    • /
    • 1991
  • A gravity survey was conducted in the western Marquette district, Michigan, to delineate the subsurface structure and the relationship of the Proterozoic Marquette Range Supergroup rocks (Precambrian X) and Archean basement (Precambrian W) where the Republic, Michigan River, and Marquette troughs join. In order to accomplish these purposes, three hundred and forty gravity stations were established in the area of $380km^2$. Positive anomalies are associated with the Precambria X, metasedimentary sequence which has a higer density with respect to the Precambrian W, basement rocks. The dominant positive gravity anomalies follow the axes of the three troughs which are filled with Precambrian X rocks. Subsurface structure was modelled by using the Talwani method. Gravity model studies indicate that the Marquette trough is asymetrically shaped and steeply dipping at the north edge except in the eastern part of the study area. The interpretive results obtained from two dimensional model studies suggest that the basement structure of the study area is relatively flat, and that the troughs were formed contemporaneously.

  • PDF