• 제목/요약/키워드: gravity load designed

검색결과 96건 처리시간 0.022초

Performance-based plastic design for seismic rehabilitation of high rise frames with eccentric bracing and vertical link

  • Karimi, Rouhina;Rahimi, Sepideh
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.623-633
    • /
    • 2019
  • A large number of available concrete buildings designed only considering gravity load that require seismic rehabilitation because of failure to meet plasticity criteria. Using steel bracings are a common type of seismic rehabilitation. The eccentric bracings with vertical link reduce non-elastic deformation imposed on concrete members as well as elimination of probable buckling problems of bracings. In this study, three concrete frames of 10, 15, and 20 stories designed only for gravity load have been considered for seismic improvement using performance-based plastic design. Afterwards, nonlinear time series analysis was employed to evaluate seismic behavior of the models in two modes including before and after rehabilitation. The results revealed that shear link can yield desirable performance with the least time, cost and number of bracings of concrete frames. Also, it was found that the seismic rehabilitation can reduce maximum relative displacement in the middle stories about 40 to 80 percent. Generally, findings of this study demonstrated that the eccentric bracing with vertical link can be employed as a suitable proxy to achieve better seismic performance for existing high rise concrete frames.

중력하중으로 설계된 포스트텐션 플랫플레이트 골조의 내진성능 (Seismic Performance of Gravity-Load Designed Post-Tensioned Flat Plate Frames)

  • 박영미;유연호;한상환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.127-128
    • /
    • 2010
  • 본 연구에서는 기둥을 관통하는 슬래브 하부 철근이 중력하중만으로 설계된 포스트텐션 플랫플레이트 골조의 내진성능에 미치는 영향을 평가하였다. PT 플랫플레이트 골조에서는 슬래브 하부 철근에 대해 ACI 318-08에서는 특별한 언급이 없기 때문에 흔히 생략하고 있다. 대상건물을 비선형 시간이력해석으로 평가한 결과, PT 플랫플레이트 골조의 내진성능은 기둥을 관통하는 슬래브 하부철근이 위치할 때 눈에 띄게 향상되었다.

  • PDF

Design of steel moment frames considering progressive collapse

  • Kim, Jinkoo;Park, Junhee
    • Steel and Composite Structures
    • /
    • 제8권1호
    • /
    • pp.85-98
    • /
    • 2008
  • In this study the progressive collapse potential of three- and nine-story special steel moment frames designed in accordance with current design code was evaluated by nonlinear static and dynamic analyses. It was observed that the model structures had high potential for progressive collapse when a first story column was suddenly removed. Then the size of beams required to satisfy the failure criteria for progressive collapse was obtained by the virtual work method; i.e., using the equilibrium of the external work done by gravity load due to loss of a column and the internal work done by plastic rotation of beams. According to the nonlinear dynamic analysis results, the model structures designed only for normal load turned out to have strong potential for progressive collapse whereas the structures designed by plastic design concept for progressive collapse satisfied the failure criterion recommended by the GSA guideline.

충격 감소 및 중력 보상을 위한 이족보행로봇의 무릎-골반 관절 설계 (Design of Knee-Pelvis Joint in the Biped Robot for Shock Reduction and Gravity Compensation)

  • 김영민;김용태
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.136-142
    • /
    • 2015
  • In the paper, a design method of knee and pelvis joint in the biped robot is proposed for shock absorption and gravity compensation. Similarly to the human's body, the knee joints of the biped robot support most body weight and get a shock from the landing motion of the foot on the floor. The torque of joint motor is also increased sharply to keep the balance of the robot. Knee and pelvis joints with the spring are designed to compensate the gravity force and reduce the contact shock of the robot. To verify the efficiency of the proposed design method, we develope a biped robot with the joint mechanism using springs. At first, we experiment with the developed robot on the static motions such as the bent-knee posture both without load and with load on the flat ground, and the balance posture on the incline plane. The current of knee joint is measured to analyze the impact force and energy consumption of the joint motors. Also, we observe the motor current of knee and pelvis joints for the walking motion of the biped robot. The current responses of joint motors show that the proposed method has an effect on shock reduction and gravity compensation, and improve the energy efficiency of walking motions for the biped robot.

Numerical analysis of under-designed reinforced concrete beam-column joints under cyclic loading

  • Sasmal, Saptarshi;Novak, Balthasar;Ramanjaneyulu, K.
    • Computers and Concrete
    • /
    • 제7권3호
    • /
    • pp.203-220
    • /
    • 2010
  • In the present study, exterior beam-column sub-assemblage from a regular reinforced concrete (RC) building has been considered. Two different types of beam-column sub-assemblages from existing RC building have been considered, i.e., gravity load designed ('GLD'), and seismically designed but without any ductile detailing ('NonDuctile'). Hence, both the cases represent the under-designed structure at different time frame span before the introduction of ductile detailing. For designing 'NonDuctile' structure, Eurocode and Indian Standard were considered. Non-linear finite element (FE) program has been employed for analysing the sub-assemblages under cyclic loading. FE models were developed using quadratic concrete brick elements with embedded truss elements to represent reinforcements. It has been found that the results obtained from the numerical analysis are well corroborated with that of experimental results. Using the validated numerical models, it was proposed to correlate the energy dissipation from numerical analysis to that from experimental analysis. Numerical models would be helpful in practice to evaluate the seismic performance of the critical sub-assemblages prior to design decisions. Further, using the numerical studies, performance of the sub-assemblages with variation of axial load ratios (ratio is defined by applied axial load divided by axial strength) has been studied since many researchers have brought out inconsistent observations on role of axial load in changing strength and energy dissipation under cyclic load.

Structural response of concrete gravity dams under blast loads

  • Sevim, Baris;Toy, Ahmet Tugrul
    • Advances in concrete construction
    • /
    • 제9권5호
    • /
    • pp.503-510
    • /
    • 2020
  • Concrete dams are important structures due to retaining amount of water on their reservoir. So such kind of structures have to be designed against static and dynamic loads. Especially considering on critical importance against blasting threats and environmental safety, dams have to be examined according to the blast loads. This paper aims to investigate structural response of concrete gravity dams under blast loads. For the purpose Sarıyar Concrete Gravity Dam in Turkey is selected for numerical application with its 85 m of reservoir height (H), 255 m of reservoir length (3H), 72 m of bottom and 7 m of top widths. In the study, firstly 3D finite element model of the dam is constituted using ANSYS Workbench software considering dam-reservoir-foundation interaction and a hydrostatic analysis is performed without blast loads. Then, nearly 13 tons TNT explosive are considered 20 m away from downstream of the dam and this is modeled using ANSYS AUTODYN software. After that explicit analyses are performed through 40 milliseconds. Lastly peak pressures obtained from analyses are compared to empirical equations in the literature and UFC 3-340-02 standard which provide unified facilities criteria for structures to resist the effects of accidental explosions. Also analyses' results such as displacements, stresses and strains obtained from both hydrostatic and blasting analysis models are compared to each other. It is highlighted from the study that blasting analysis model has more effective than the only hydrostatic analysis model. So it is highlighted from the study that the design of dams should be included the blast loads.

초고층 건물의 기둥축소와 지진하중에 대한 구조적 영향 (A Column Shortening on High-Rise Building and Structural Effect under seismic load)

  • 정은호;김희철
    • 한국지진공학회논문집
    • /
    • 제1권3호
    • /
    • pp.59-68
    • /
    • 1997
  • 대도시에서 초고층 건물의 필요성은 구조 기술자에게 새로운 문제를 안겨주었다. 기둥축소의 효과는 설계 및 시공에 있어 특별한 주의를 요구한다. 기둥의 축소는 칸막이, 마감, 그리고 설비체계와 같이 수직하중을 지탱하도록 고려되어 있지 않은 비구조적인 요소에 영향을 미친다. 또한 각 기둥의 축소량 차이는 주위의 슬래브 및 보와 같은 부재들을 경사지게 한다. 축소량을 예측하는 목적은 부등 축소량의 차이를 미리 보정하는데 있다. 본 연구는 부동 축소량에 의한 주구조부재의 영향에 대한 내용을 다루었다. 자중으로 인해 초지 수직변위를 갖는 52층 철근콘크리트 구조물에 지진하중을 적용하여 구조물에 미치는 영향을 평가하였다. 각 수직구조요소에 대한 축소량은 전산화된 기둥축소 해석 프로그램을 이용하여 예측되었으며 지진하중으로 인한 축소량이 보정된 구조물과 보정되지 않은 구조물 사이의 응력을 조사하였다.

  • PDF

Strengthening RC frames subjected to lateral load with Ultra High-Performance fiber reinforced concrete using damage plasticity model

  • Kota, Sai Kubair;Rama, J.S. Kalyana;Murthy, A. Ramachandra
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.221-232
    • /
    • 2019
  • Material non-linearity of Reinforced Concrete (RC) framed structures is studied by modelling concrete using the Concrete Damage Plasticity (CDP) theory. The stress-strain data of concrete in compression is modelled using the Hsu model. The structures are analyzed using a finite element approach by modelling them in ABAQUS / CAE. Single bay single storey RC frames, designed according to Indian Standard (IS):456:2000 and IS:13920:2016 are considered for assessing their maximum load carrying capacity and failure behavior under the influence of gravity loads and lateral loads. It is found that the CDP model is effective in predicting the failure behaviors of RC frame structures. Under the influence of the lateral load, the structure designed according to IS:13920 had a higher load carrying capacity when compared with the structure designed according to IS:456. Ultra High Performance Fiber Reinforced Concrete (UHPFRC) strip is used for strengthening the columns and beam column joints of the RC frame individually against lateral loads. 10mm and 20mm thick strips are adopted for the numerical simulation of RC column and beam-column joint. Results obtained from the study indicated that UHPFRC with two different thickness strips acts as a very good strengthening material in increasing the load carrying capacity of columns and beam-column joint by more than 5%. UHPFRC also improved the performance of the RC frames against lateral loads with an increase of more than 3.5% with the two different strips adopted. 20 mm thick strip is found to be an ideal size to enhance the load carrying capacity of the columns and beam-column joints. Among the strengthening locations adopted in the study, column strengthening is found to be more efficient when compared with the beam column joint strengthening.

Seismic behaviour of gravity load designed flush end-plate joints

  • Cassiano, David;D'Aniello, Mario;Rebelo, Carlos
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.621-634
    • /
    • 2018
  • Flush end-plate (FEP) beam-to-column joints are commonly used for gravity load resisting parts in steel multi-storey buildings. However, in seismic resisting structures FEP joints should also provide rotation capacity consistent with the global structural displacements. The current version of EN1993-1-8 recommends a criterion aiming at controlling the thickness of the end-plate in order to avoid brittle failure of the connection, which has been developed for monotonic loading conditions assuming elastic-perfectly plastic behaviour of the connection's components in line with the theory of the component method. Hence, contrary to the design philosophy of the hierarchy of resistances implemented in EN1998-1, the over strength and the hardening of the plastic components are not directly accounted for. In light of these considerations, this paper describes and discusses the results obtained from parametric finite element simulations aiming at investigating the moment-rotation response of FEP joints under cyclic actions. The influence of bolt diameter, thickness of end-plate, number of bolt rows and shape of beam profile on the joint response is discussed and design requirements are proposed to enhance the ductility of the joints.

Behavior of Continuous RC Deep Beams Supporting Bearing Walls

  • Lee, Han-Seon;Ko, Dong-Woo
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.581-582
    • /
    • 2009
  • Continuous deep girders which transmit the gravity load from the upper wall to lower columns have frequently long end shear spans between the boundary of the upper wall and the face of the lower column. This paper presents the results of tests and analyses performed on three 1:2.5 scale specimens with long end shear spans, (the ratios of shear-span/height : 2.0