• 제목/요약/키워드: gravity gradient torque

검색결과 7건 처리시간 0.019초

Ground Base Laser Torque Applied on LEO Satellites of Various Geometries

  • Khalifa, N.S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권4호
    • /
    • pp.484-490
    • /
    • 2012
  • This paper is devoted to investigate the feasibility of using a medium power ground-based laser to produce a torque on LEO satellites of various shapes. The laser intensity delivered to a satellite is calculated using a simple model of laser propagation in which a standard atmospheric condition and linear atmospheric interaction mechanism is assumed. The laser force is formulated using a geocentric equatorial system in which the Earth is an oblate spheroid. The torque is formulated for a cylindrical satellite, spherical satellites and for satellites of complex shape. The torque algorithm is implemented for some sun synchronous low Earth orbit cubesats. Based on satellites perigee height, the results demonstrate that laser torque affecting on a cubesat has a maximum value in the order of $10^{-9}$ which is comparable with that of solar radiation. However, it has a minimum value in the order of $10^{-10}$ which is comparable with that of gravity gradient. Moreover, the results clarify the dependency of the laser torque on the orbital eccentricity. As the orbit becomes more circular it will experience less torque. So, we can conclude that the ground based laser torque has a significant contribution on the low Earth orbit cubesats. It can be adjusted to obtain the required control torque and it can be used as an active attitude control system for cubesats.

저궤도 위성의 외란 토크 해석 (Analysis of External Disturbance Torque on a LEO Satellite)

  • 임조령;김용복;용기력
    • 항공우주기술
    • /
    • 제10권1호
    • /
    • pp.193-200
    • /
    • 2011
  • 본 연구는 저궤도의 태양동기궤도 위성에 미치는 외란 토크의 크기와 영향을 해석하였다. 위성체 좌표계에서 보았을 때, 지구 지향 자세에서 최대 토크는 약 $8.3{\times}10^{-4}$ Nm로 한 궤도당 약 1.4 Nms 의 모멘텀이 축적되고, 태양지향 자세에서의 최대 토크는 약 $1.6{\times}10^{-3}$ Nm로 한 궤도당 약 3.0 Nms 의 모멘텀이 축적된다. 한 궤도당 축적되는 모멘텀의 양은 토커의 크기를 결정하는 설계 기준 자료로 사용되는데, 현재 사용 가능한 자기 토커의 한 궤도당 모멘텀 덤핑 용량을 고려했을 때, 위성의 임무 수행을 위해 적절한 선택임을 확인하였다.

저궤도위성 궤도운동 및 자세에 영향을 미치는 외부교란토크 분석

  • 최홍택;용기력;이승우
    • 항공우주기술
    • /
    • 제2권1호
    • /
    • pp.54-62
    • /
    • 2003
  • 우주공간상의 위성체는 아주 미세한 크기에 불과하지만 여러 가지 원인에 의한 외부교란토크를 받는다. 외부교란토크는 위성체의 궤도 운동뿐만 아니라 위성체의 자세에도 큰 영향을 미친다. 저궤도위성의 자세동역학에 작용하는 외부교란토크는 다양하다. 이러한 것들 중 중요한 4가지 원인은 중력경도, 지구자기장, 태양복사압 및 대기저항 등을 들 수 있다. 본 연구에서는 저궤도위성과 같은 저궤도위성에 작용하는 외부교란토크를 상세히 분석하고 저궤도위성 자세동역학에 미치는 외부교란토크의 영향을 상세히 기술한다.

  • PDF

Three-axis Attitude Control for Flexible Spacecraft by Lyapunov Approach under Gravity Potential

  • Bang, Hyo-Choong;Lee, Kwang-Hyun;Lim, Hyung-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제4권1호
    • /
    • pp.99-109
    • /
    • 2003
  • Attitude control law synthesis for the three-axis attitude maneuver of a flexible spacecraft model is presented in this study. The basic idea is motivated by previous works for the extension into a more general case. The new case includes gravitational gradient torque which has significant effect on a wide range of low earth orbit missions. As the first step, the fully nonlinear dynamic equations of motion are derived including gravitational gradient. The control law design based upon the Lyapunov approach is attempted. The Lyapunov function consists of a weighted combination of system kinetic and potential energy. Then, a set of stabilizing control law is derived from the basic Lyapunov stability theory. The new control law is therefore in a general form partially validating the previous work in some sense.

Unscented Kalman Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

  • Kim, Sung-Woo;Park, Sang-Young;Abdelrahman, Mohammad;Choi, Kyu-Hong
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.36.1-36.1
    • /
    • 2008
  • An Unscented Kalman Filter(UKF) for estimation of attitude and rate of a spacecraft using only magnetometer vector measurement is presented. The dynamics used in the filter is nonlinear rotational equation which is augmented by the quaternion kinematics to construct a process model. The filter is designed for low Earth orbit satellite, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. To stabilize the attitude, linear PD controller is applied and the actuator is assumed to be thruster. A Monte-Carlo simulation has been done to guarantee the stability of the filter performance to the various initial conditions. The UKF performance is compared to that of EKF and it reveals that UKF outperforms EKF.

  • PDF

Unscented KALMAN Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

  • Kim, Sung-Woo;Abdelrahman, Mohammad;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • 제26권1호
    • /
    • pp.31-46
    • /
    • 2009
  • An Unscented Kalman Filter (UKF) for estimation of the attitude and rate of a spacecraft using only magnetometer vector measurement is developed. The attitude dynamics used in the estimation is the nonlinear Euler's rotational equation which is augmented with the quaternion kinematics to construct a process model. The filter is designed for small satellite in low Earth orbit, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag torque. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. Two types of actuators have been modeled and applied in the simulation. The PD controller is used for the two types of actuators (reaction wheels and thrusters) to detumble the spacecraft. The estimation error converged to within 5 deg for attitude and 0.1 deg/s for rate respectively when the two types of actuators were used. A joint state parameter estimation has been tested and the effect of the process noise covariance on the parameter estimation has been indicated. Also, Monte-Carlo simulations have been performed to test the capability of the filter to converge with the initial conditions sampled from a uniform distribution. Finally, the UKF performance has been compared to that of the EKF and it demonstrates that UKF slightly outperforms EKF. The developed algorithm can be applied to any type of small satellites that are actuated by magnetic torquers, reaction wheels or thrusters with a capability of magnetometer vector measurements for attitude and rate estimation.

Neural Network based Three Axis Satellite Attitude Control using only Magnetic Torquers

  • Sivaprakash, N.;Shanmugam, J.;Natarajan, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1641-1644
    • /
    • 2005
  • Magnetic actuation utilizes the mechanic torque that is the result of interaction of the current in a coil with an external magnetic field. A main obstacle is, however, that torques can only be produced perpendicular to the magnetic field. In addition, there is uncertainty in the Earth magnetic field models due to the complicated dynamic nature of the field. Also, the magnetic hardware and the spacecraft can interact, causing both to behave in undesirable ways. This actuation principle has been a topic of research since earliest satellites were launched. Earlier magnetic control has been applied for nutation damping for gravity gradient stabilized satellites, and for velocity decrease for satellites without appendages. The three axes of a micro-satellite can be stabilized by using an electromagnetic actuator which is rigidly mounted on the structure of the satellite. The actuator consists of three mutually-orthogonal air-cored coils on the skin of the satellite. The coils are excited so that the orbital frame magnetic field and body frame magnetic field coincides i.e. to make the Euler angles to zero. This can be done using a Neural Network controller trained by PD controller data and driven by the difference between the orbital and body frame magnetic fields.

  • PDF