• Title/Summary/Keyword: gravel column

Search Result 24, Processing Time 0.032 seconds

A Study on the Drainage Effects of Gravel Drain by Laboratory Model Test (실내모형시험을 통한 Gravel Drain의 배수효과에 관한 연구)

  • 천병식;김백영;고용일;여유현;박경원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.87-94
    • /
    • 1999
  • Sand drain as a vertical drainage is widely used in soft ground improvement. Recently, sand, the principal source of sand drain, is running out. A laboratory model test was carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. Two cylindrical containers for the model test were filled with marine clayey soil from the west coast of Korea with a column in the center, one with sand, the other with gravel. Vibrating wire type piezometers were installed at the distance of 1.0D, 1.5D and 2.0D from the center of the column. D is the diameter of the column. The transient process of pore water pressure with loading and the characteristics of consolidation were studied with the data gained from the measuring instrument place on the surface of the container. The parameter study was performed for the marine clayey soil before and after the test in order to check the effectiveness of the improvement. The clogging effect was checked at various depth in gravel column after the test. According to the test, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. As a result, it is assumed that gravel is relatively acceptable as a drainage material.

  • PDF

A Case Study on the Application of Gravel Pile in Soft Ground (Gravel Pile의 현장적용을 위한 시험시공 사례연구)

  • 천병식;고용일;여유현;김백영;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.32-41
    • /
    • 2000
  • Sand drain as a vertical drainage is widely used in soft ground improvement Recently, sand, the principal source of sand drain, is running out. The laboratory model tests were carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. Two cylindrical containers for the model test were filled with marine clayey soil from the west coast of Korea with a column in the center, one with sand, the other with gravel. Vibrating wire type piezometers were installed at the distance of 1.0D, 1.5D and 2.0D from the center of the column. The characteristics of consolidation were studied with data obtained from the measuring instrument place on the surface of the container. The parameter study was performed on the marine clayey soil before and after the test in order to verify the effectiveness of the improvement. The clogging effect was checked at various depth in gravel column after the test. In-situ tests area was divided into two areas by material used. One is Sand Drain(SD) and Sand Compaction Pile(SCP) area, the other is Gravel Drain(GD) and Gravel Compaction Pile(GCP) area. Both areas were monitored to obtain the information on settlement, pore water pressure and bearing capacity by measuring instruments for stage loading caused by embankment. The results of measurements were analyzed. According to the test results, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. It is assumed that gravel is relatively acceptable as a drainage material. Gravel is considered to be a better material than sand for bearing capacity, and it is found that bearing capacity is larger when gravel is used as a gravel compaction pile than as a gravel drain.

  • PDF

A Study on the Bearing Capacity of Gravel Column in Soft Ground (연약지반에서의 쇄석골재 말뚝의 지지력 특성 연구)

  • 천병식;여유현
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.407-414
    • /
    • 1999
  • Sand drain as a vertical drainage is widely used in soft ground improvement. Recently, sand, the principal source of sand drain, is running out. A laboratory model test was carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. According to the test, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel rile explains the result. The clogging effect was not found in gravel column. As a result, it is assumed that gravel is relatively acceptable as a drainage material. Gravel material seems better than sand material in bearing capacity and it is found that bearing capacity is larger when gravel is used as compaction pile than as drain from in-situ test on bearing capacity. Increase of bearing capacity with gravel pile means an effect of composite ground by stiffness of gravel material. It can lie supposed to use gravel pile instead of sand pile in view of consolidation effect and bearing capacity.

  • PDF

A Case Study on the Application of Gravel Pile in Soft Ground (Gravel Pile에 의한 연약지반 개량 시험시공 사례연구)

  • 천병식;고용일;여유현;김백영;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.223-230
    • /
    • 2000
  • Sand drain as a vertical drainage is widely used in soft ground improvement. Recently, sand, the principal source of sand drain, is running out. The in-situ tests were carried out to utilize gravel as a substitute for sand. In-situ tests area was divided into two areas by material used. One is Sand Drain(SD) and Sand Compaction Pile(SCP) area, the other is Gravel Drain(GD) and Gravel Compaction Pile(GCP) area. Both areas were monitored to obtain the information on settlement, pore water pressure and bearing capacity by measuring instruments for stage loading caused by embankment. The results of measurements were analyzed, The clogging effect was checked at various depth in gravel column after the test. According to the test results, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. It is assumed that gravel is relatively acceptable as a drainage material. Gravel is considered to be a better material than sand for bearing capacity, and it is found that bearing capacity is larger when gravel is used as a gravel compaction pile than as a gravel drain.

  • PDF

Verification of the large scale, free-free resonant testing equipment using Jumunjin sand (주문진 표준사를 이용한 대형 공진주 시험 장비의 검증)

  • Park, In-Beom;Park, Chul-Soo;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1415-1424
    • /
    • 2009
  • Measuring dynamic properties of gravel-sized materials demands large specimens. Due to the difficulties in experiment as well as equipment, the dynamic properties of gravel-sized material has rarely been investigated. To realize free-free end condition more properly and stabilize specimen during testing with new specimen support system, a free-free resonant column testing device, which is capable of testing gravel-sized materials and constraining a specimen in free-free boundaries, is developed. We report the calibration of the equipment and preliminary testing results on Jumunjin sand. The testing data are compared with the previous data obtained from the existing fixed-free resonant column test.

  • PDF

Shear behavior of geotextile-encased gravel columns in silty sand-Experimental and SVM modeling

  • Dinarvand, Reza;Ardakani, Alireza
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.505-520
    • /
    • 2022
  • In recent years, geotextile-encased gravel columns (usually called stone columns) have become a popular method to increasing soil shear strength, decreasing the settlement, acceleration of the rate of consolidation, reducing the liquefaction potential and increasing the bearing capacity of foundations. The behavior of improved loose base-soil with gravel columns under shear loading and the shear stress-horizontal displacement curves got from large scale direct shear test are of great importance in understanding the performance of this method. In the present study, by performing 36 large-scale direct shear tests on sandy base-soil with different fine-content of zero to 30% in both not improved and improved with gravel columns, the effect of the presence of gravel columns in the loose soils were investigated. The results were used to predict the shear stress-horizontal displacement curve of these samples using support vector machines (SVM). Variables such as the non-plastic fine content of base-soil (FC), the area replacement ratio of the gravel column (Arr), the geotextile encasement and the normal stress on the sample were effective factors in the shear stress-horizontal displacement curve of the samples. The training and testing data of the model showed higher power of SVM compared to multilayer perceptron (MLP) neural network in predicting shear stress-horizontal displacement curve. After ensuring the accuracy of the model evaluation, by introducing different samples to the model, the effect of different variables on the maximum shear stress of the samples was investigated. The results showed that by adding a gravel column and increasing the Arr, the friction angle (ϕ) and cohesion (c) of the samples increase. This increase is less in base-soil with more FC, and in a proportion of the same Arr, with increasing FC, internal friction angle and cohesion decreases.

Investigating the combination of natural and crushed gravel on the fresh and hardened properties of self-compacting concrete

  • Moosa Mazloom;Mohammad Ebrahim Charmsazi;Mohammad Hosein Parhizkari
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • Self-compacting concrete is widely used around the globe today due to its special and unique properties. This study examines the effect of natural and crushed gravel combinations in different percentages in short-and long-term properties of concrete. The best utilized sand had a fineness modulus of 2.7. In the mentioned mix designs, silica fume was used with 0 and 7% of the weight of the cement. In order to check the properties of fresh and hardened concrete, 9 and 5 test types were performed, respectively. The carried out tests were slump flow, V-funnel, J-ring, L-box, U-box and column segregation for fresh concrete, and compressive, tensile and flexural strengths for hardened concrete. A mix with only 100% natural gravel was considered as the control mix. According to the results, the control mix design and the one containing 100% crushed gravel with silica fume were the best in fresh and hardened concrete tests, respectively. Finally, using the optimization method, a mix design with 25% natural gravel, 75% crushed gravel and silica fume was introduced as the best mix in terms of the results of both fresh and hardened concrete tests.

Leaching of Arsenic in Soils Amended with Crushed Arsenopyrite Rock

  • Lee, Kyosuk;Shim, Hoyoung;Lee, Dongsung;Yang, Jae E.;Chung, Dougyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.113-119
    • /
    • 2014
  • Arsenic and its compounds which is one of the most toxic elements that can be found naturally on earth in small concentrations are used in the production of pesticides, herbicides, and insecticides. Most arsenic that cannot be mobilized easily when it is immobile is also found in conjunction with sulfur in minerals such as arsenopyrite (AsFeS), realgar, orpiment and enargite. In this investigation we observed the leaching of arsenic in soils amended with several levels of gravel size of arsenopyrite collected from a road construction site. Soil and gravel size of arsenopyrite were characterized by chemical and mineralogical analyses. Results of XRF analysis of arsenopyrite indicated that the proportion of arsenate was 0.075% (wt $wt^{-1}$) while the maximum amount of arsenic in soil samples was 251.3 mg $kg^{-1}$. Cumulative amounts of effluent collected from the bottom of the soil column for different mixing rate of the gravel were gradually increased where proportion of the gravel mixed was greater than 70% whereas the effluent was stabilized to the maximum after approximately 45 pore volumes of effluent or greater were collected. The arsenic in the effluent was recovered from the soil columns in which the proportion of arsenopyrite gravel was 60% or greater. The total amount of arsenic recovered as effluent was increased with increasing proportion of gravel in a soil, indicating that the arsenic in the effluent was closely related with gravel fraction of arsenopyrite.

Mobility of pesticides in different soil textures and gravel contents under soil column (토양 column을 이용한 토성 및 자갈함량별 농약 이동특성)

  • Lee, Sang-Min;Kim, Seong-Soo;Park, Dong-Sik;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.330-337
    • /
    • 2005
  • This study was investigated to elucidate the pesticide mobility in three different soil textures(Heongseong sandy loam; Chuncheon, loam; Taeback, silty clay loam) and four different gravel contents(0, 20, 40, 60%) of Taebaek soil using soil column. Carbofuran, which ranks the highest water solubility among 7 pesticides(carbendazim, carbofuran, chlorpyrifos, cypermethrin, dimethomorph, diniconazole and endosulfan) was defected over 87% in leachate samples within all soil types from early sampling time. Amount of 5 residual pesticides excluding carbendazim and carbofuran were ordered silty clay loam > loam > sandy loam, indicating pesticide residues are related to percentage of clay contents in soils. Comparing the amount of residual pesticides in soil column(upper, middle and lower layer), 6 pesticides apart from carbofuran were found in the range of $50{\sim}92%$ on the upper layer of silty clay loam and loam. Mobility of pesticides either in soil or leachate samples is dependant on water solubility of pesticide and clay content of soil. The results obtained from four different gravel contents of Tacback soil were similar to the results of three different soil textures. Also it was found that more the gravel contents, faster the flow velocity of leachate water. These results possibly provide an idea to select proper pesticides and to reduce soil and water contamination at alpine and sloped-land.

Railbed Evaluation by using In-situ Penetration Test (원위치 관입실험기를 활용한 철도 노반 평가)

  • Kim, Ju-Han;Park, Jung-Hee;Yoon, Hyung-Koo;Koh, Tae-Hoon;Lee, Jong-Sub
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.261-267
    • /
    • 2011
  • The test fit has commonly used for the evaluation of the railbed condition, and indirect methods by using the compressional wave are also studied. the direct evaluation method by penetration test has not been studied. For the measurement of in-situ cone tip resistance of the railbed with minimizing the disturbance of the upper railbed. the cone penetrometer with the helical type outer rod(CPH) was developed. The outer rod, which has helical screw, is penetrated through the gravel layer and provides the reaction force for cone penetration testing. the cone tip resistances are measured by the mini cone penetrometer, where diameter is 15mm. For the developing the mini cone, strain gauge installation, circuit configuration, penetration rates and calibration process are considered. For the easy penetration of the screw rod in the field, the reaction force stepping plate and guide column are arranged. The screw rod are penetrated through the gravel layer. And the mini cone was pushed into the subgrade railbed at the penetration rate of 1mm/sec. The penetration test shows that the cone tip resistance increases along the depth. In addition, the subgrade condition is evaluated. This study demonstrates that the CPH may be effectively used for the evaluation of subgrade method any damage of the gravel layer.

  • PDF