• Title/Summary/Keyword: graphitization

Search Result 93, Processing Time 0.022 seconds

PROCESSING OF INTERSTELLAR DUST GRAINS IN GALAXIES

  • Kaneda, H.;Ishihara, D.;Onaka, T.;Sakon, I.;Suzuki, T.;Kobata, K.;Kondo, T.;Yamagishi, M.;Yasuda, A.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.237-242
    • /
    • 2012
  • We have performed a systematic study of interstellar dust grains in various environments of galaxies. AKARI has revealed the detailed properties of dust grains not only in star-forming regions but also in regions not relevant to star formation, some of which are found not to follow our old empirical knowledge. Because of its unique capabilities, AKARI has provided new knowledge on the processing of large grains and polycyclic aromatic hydrocarbons (PAHs). For example, we detect PAHs from elliptical galaxies, which show unusual spectral features and spatial distributions, demonstrating importance of material processing in the interstellar space. We find that copious amounts of large grains and PAHs are flowing out of starburst galaxies by galactic superwinds, which are being shattered and destroyed in galactic haloes. We discover evidence for graphitization of carbonaceous grains near the center of our Galaxy, providing a clue to understanding the activity of the Galactic center. We review the results obtained from our AKARI program, focusing on the processing of carbonaceous grains in various environments of galaxies.

Effect of Fiber Orientation on the Friction and Wear Properties of Epoxy-based Composites (섬유 방향에 따른 에폭시 기반 복합재의 마찰 및 마모 특성에 관한 연구)

  • An, Hyo-Seong;Khadem, Mahdi;Chun, Heoung-Jae;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.133-138
    • /
    • 2020
  • In this paper, we present an experimental investigation of the friction coefficient and wear area change of carbon/epoxy and E-glass/epoxy composites depending on the fiber direction (0°/90°). We compared the results of the case where the sliding direction is parallel to the fiber direction (0°) with that of the case where it is perpendicular to the fiber direction (90°). The ball-on-plate wear test equipment was used to cause wear in both directions. Two types of specimens were prepared with thicknesses of 3 mm-one made of carbon fiber reinforced plastic composite (CFRP) and the other of glass fiber reinforced plastic composite (GFRP). A normal force of 20 N was applied to the specimen and the sliding speed was 10 mm/s and the sliding distance was set to 20 m to perform the wear test. The CFRP demonstrates superior tribological characteristics compared to the GFRP. This outcome is attributed to graphitization of carbon, which serves as solid lubricating particles. In addition, both CFRP and GFRP are worn more in the 90° direction than in the 0° direction. This is due to the greater occurrence of fiber breakage and separation in the 90° direction than in the 0° direction. This study is expected to be utilized as basic data for understanding the friction and wear characteristics of CFRP and GFRP composites along the fiber direction and to apply the appropriate material.

Fabrication of Octahedral Co3O4/Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells (염료감응 태양전지의 Pt-free 상대전극을 위한 팔면체 Co3O4/탄소나노섬유 복합체 제조)

  • An, HyeLan;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.250-257
    • /
    • 2016
  • Octahedral $Co_3O_4$/carbon nanofiber (CNF) composites are fabricated using electrospinning and hydrothermal methods. Their morphological characteristics, chemical bonding states, and electrochemical properties are used to demonstrate the improved photovoltaic properties of the samples. Octahedral $Co_3O_4$ grown on CNFs is based on metallic Co nanoparticles acting as seeds in the CNFs, which seeds are directly related to the high performance of DSSCs. The octahedral $Co_3O_4$/CNFs composites exhibit high photocurrent density ($12.73mA/m^2$), superb fill factor (62.1 %), and excellent power conversion efficiency (5.61 %) compared to those characteristics of commercial $Co_3O_4$, conventional CNFs, and metallic Co-seed/CNFs. These results can be described as stemmnig from the synergistic effect of the porous and graphitized matrix formed by catalytic graphitization using the metal cobalt catalyst on CNFs, which leads to an increase in the catalytic activity for the reduction of triiodide ions. Therefore, octahedral $Co_3O_4$/CNFs composites can be used as a counter electrode for Pt-free dye-sensitized solar cells.

Fabrication and Electrical Properties of Conductive Carbon Black filled Poly(Vinyliden Fluoride) Composite (도전성 카본블랙/PVdF 복합재의 제조 및 전기적 특성)

  • Kim, Myung-Chan;Moon, Seung-Hwan;Lim, Jae-Seok;Hahm, Hyun-Sik;Park, Hong-Soo;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.212-220
    • /
    • 2003
  • Electrical properties of carbon filler/PVdF [poly(vinylidene fluoride)] composite were investigated as a funtion of carbon filler/PVdF ratio in the range of 0.2${\sim}$0.5. Three kinds of comercialzied conductive carbon blacks such as Hiblack 41Y, KE300J, and KE600J, and carbon nanofibers prepared by the catalytic chemical vapor deposition of $C_2H_4$ over Ni-Cu catalysts were used as the carbon fillers. The electrical conductivity of carbon filler/PVdF composites were in the range of 0.65 to 13.5 S/cm depending the fillers' electrical conductivity ranging from 5.6 to 23.1 S/cm. Among the carbon fillers used, the KE600J carbon black showed the highest conductivity both in the composite and filler itself because of its high degree of graphitization due to the high-temperature thermal treatment and its high surface area due to the activation treatment.

Physical Properties and Morphology of Carbon Nanotubes Prepared by Thermal and Plasma CVD of Acetylene (아세틸렌의 열 및 플라즈마 CVD법으로 제조한 탄소나노튜브의 물성과 구조적 특성)

  • Kim, Myung-Chan;Moon, Seung-Hwan;Lim, Jae-Seok;Hahm, Hyun-Sik;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.174-181
    • /
    • 2004
  • Multi-walled carbon nanotubes (CNTs) were prepared by thermal chemical vapor deposition (CVD) and microwave plasma chemical vapor deposition (MPCVD) using various combination of binary catalysts with four transition metals such as Fe, Co, Cu, and Ni. In the preparation of CNTs from acetylene precursor by thermal CVD, the CNTs with very high yield of 43.6 % was produced over $Fe-Co/Al_2O_3$. The highest yield of CNTs was obtained with the catalyst reduced for 3 hr and the yield was decreased with increasing reduction time to 5 hr, due to the formation of $FeAl_2O_4$ metal-aluminate. On the other hand, the CNTs prepared by acethylene plasma CVD had more straight, smaller diameter, and larger aspect ratio(L/D) than those prepared by thermal CVD, although their yield had lower value of 27.7%. The degree of graphitization of CNTs measured by $I_d/I_g$ value and thermal degradation temperature were 1.04 and $602^{\circ}C$, respectively.

Characterization of the effect of He+ irradiation on nanoporous-isotropic graphite for molten salt reactors

  • Zhang, Heyao;He, Zhao;Song, Jinliang;Liu, Zhanjun;Tang, Zhongfeng;Liu, Min;Wang, Yong;Liu, Xiangdong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1243-1251
    • /
    • 2020
  • Irradiation-induced damage of binderless nanoporous-isotropic graphite (NPIG) prepared by isostatic pressing of mesophase carbon microspheres for molten salt reactor was investigated by 3.0 MeV He+ irradiation at room temperature and high temperature of 600 ℃, and IG-110 was used as the comparation. SEM, TEM, X-ray diffraction and Raman spectrum are used to characterize the irradiation effect and the influence of temperature on graphite radiation damage. After irradiation at room temperature, the surface morphology is rougher, the increase of defect clusters makes atom flour bend, the layer spacing increases, and the catalytic graphitization phenomenon of NPIG is observed. However, the density of defects in high temperature environment decreases and other changes are not obvious. Mechanical properties also change due to changes in defects. In addition, SEM and Raman spectra of the cross section show that cracks appear in the depth range of the maximum irradiation dose, and the defect density increases with the increase of irradiation dose.

Vertical Growth of CNTs by Bias-assisted ICPHFCVD and their Field Emission Properties (DC Bias가 인가된 ICPHFCVD를 이용한 탄소나노튜브의 수직 배향과 전계방출 특성)

  • Kim, Kwang-Sik;Ryu, Ho-Jin;Jang, Gun-Eik
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.171-177
    • /
    • 2002
  • In this study, the vertical aligned carbon nanotubes was synthesized by DC bias-assisted Inductively Coupled Plasma Hot-Filament Chemical Vapor Deposition (ICPHFCVD). The substrate used CNTs growth was Ni(300 ${\AA}$)/Cr(200 ${\AA}$)-deposited one on glass by RF magnetron sputtering. R-F, DC bias and filament power during the growth process were 150 W, 80 W, 7∼8 A, respectively. The grown CNTs showed hollow structure and multi-wall CNTs. The top of grown CNT was found to Ni-tip that the CNT end showed to metaltip. The graphitization and field emission properties of grown was better than grown CNTs by ICPCVD. The turn-on voltage of CNT grown by DC bias-assisted ICPHFCVD showed about 3 V/${\mu}m$.

Biomass Waste, Coffee Grounds-derived Carbon for Lithium Storage

  • Um, Ji Hyun;Kim, Yunok;Ahn, Chi-Yeong;Kim, Jinsoo;Sung, Yung-Eun;Cho, Yong-Hun;Kim, Seung-Soo;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.163-168
    • /
    • 2018
  • Biomass waste-derived carbon is an attractive alternative with environmental benignity to obtain carbon material. In this study, we prepare carbon from coffee grounds as a biomass precursor using a simple, inexpensive, and environmentally friendly method through physical activation using only steam. The coffee-derived carbon, having a micropore-rich structure and a low extent of graphitization of disordered carbon, is developed and directly applied to lithium-ion battery anode material. Compared with the introduction of the Ketjenblack (KB) conducting agent (i.e., coffee-derived carbon with KB), the coffee-derived carbon itself achieves a reversible capacity of ~200 mAh/g (0.54 lithium per 6 carbons) at a current density of 100 mA/g after 100 cycles, along with excellent cycle stability. The origin of highly reversible lithium storage is attributed to the consistent diffusion-controlled intercalation/de-intercalation reaction in cycle life, which suggests that the bulk diffusion of lithium is favorable in the coffee-derived carbon itself, in the absence of a conducting agent. This study presents the preparation of carbon material through physical activation without the use of chemical activation agents and demonstrates an application of coffee-derived carbon in energy storage devices.

Chromium Carbide Coating on Diamond Particle Using Molten Salts (용융염을 이용한 다이아몬드 표면의 크롬카바이드 코팅)

  • Jeong, Young-Woo;Kim, Hwa-Jung;Ahn, Yong-Sik;Choi, Hee-Lack
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.423-427
    • /
    • 2018
  • For diamond/metal composites it is better to use diamond particles coated with metal carbide because of improved wettability between the diamond particles and the matrix. In this study, the coating of diamond particles with a chromium carbide layer is investigated. On heating diamond and chromium powders at $800{\sim}900^{\circ}C$ in molten salts of LiCl, KCl, $CaCl_2$, the diamond particles are coated with $Cr_7C_3$. The surfaces of the diamond powders are analyzed using X-ray diffraction and scanning electron microscopy. The average thickness of the $Cr_7C_3$ coating layers is calculated from the result of the particle size analysis. By using the molten salt method, the $Cr_7C_3$ coating layer is uniformly formed on the diamond particles at a relatively low temperature at which the graphitization of the diamond particles is avoided. Treatment temperatures are lower than those in the previously proposed methods. The coated layer is thickened with an increase in heating temperature up to $900^{\circ}C$. The coating reaction of the diamond particles with chromium carbide is much more rapid in $LiCl-KCl-CaCl_2$ molten salts than with the molten salts of $KCl-CaCl_2$.

Experimental study on the phase change of a graphite using piston cylinder, DAC and Synchrotron Radiation (피스톤 실린더와 DAC 및 방사광을 이용한 흑연의 상변화 실험 연구)

  • 나기창;김영호
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.129-134
    • /
    • 1996
  • Possibile phase transitions of graphite have been examined experimentally using piston cylinder and DAC with synchrotron radiation. The graphite-forming processes in high pressure and low temperature conditions and the phase change under super high pressure were studied in the conditions of 0.7 Gpa and 270-$360^{\circ}C$ in piston cylinder and under 39.6 Gpa in DAC. In the piston cylinder experiment using LiCO3as a catalyzer, we could synthesize disordered graphites whose TGD values change progressively form 9 to 53. It was known that the temperature of graphitization in 0.7 Gpa is between 270-$300^{\circ}C$. Numerous unknown XRD peaks were observed in the super high-pressure experiment. However, it is difficult to pick up a new peak of a hexagonal diamond phase. Application of the different high pressure apparatus as well as a peculiar X-ray source and various graphite specimen would be useful for super high-pressure experiment, and more detailed works are needed to characterize the unknown phase(s) observed in this study.

  • PDF