• Title/Summary/Keyword: graphite oxide

Search Result 160, Processing Time 0.03 seconds

Glucose Oxidase-Coated ZnO Nanowires for Glucose Sensor Applications

  • Noh, Kyung-Min;Sung, Yun-Mo
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.669-672
    • /
    • 2008
  • Well-aligned Zinc oxide (ZnO) nanowires were synthesized on silicon substrates by a carbothermal evaporation method using a mixture of ZnO and graphite powder with Au thin film was used as a catalyst. The XRD results showed that as-prepared product is the hexagonal wurzite ZnO nanostructure and SEM images demonstrated that ZnO nanowires had been grown along the [0001] direction with hexagonal cross section. As-grown ZnO nanowires were coated with glucose oxidase (GOx) for glucose sensing. Glucose converted into gluconic acid by reaction with GOx and two electrons are generated. They transfer into ZnO nanowires due to the electric force between electrons and the positively charged ZnO nanostructures in PBS. Photoluminescence (PL) spectroscopy was employed for investigating the movements of electrons, and the peak PL intensity increased with the glucose concentration and became saturated when the glucose concentration is above 10 mM. These results demonstrate that ZnO nanostructures have potential applications in biosensors.

Coating Durability of Metal Bipolar plate for Low Temperature PEMFC (저온 PEMFC용 금속분리판 코팅의 내구 특성 연구)

  • Kang, Sungjin;Jeon, Yootaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.82.2-82.2
    • /
    • 2010
  • The development of bipolar plate having high efficiency and chemical properties has a major impact on fuel cell applications commercialization. Even though graphite bipolar plate has high electric conductivity and chemical resistance, it has demerits about mass production and brittle property for commercialization. Hence, metallic bipolar plate can be substitute for fuel cell bipolar plate. Although its inadequate corrosion behavior under PEMFC environment lead to a deterioration of membrane by dissolved metal ions, metallic bipolar plate for PEMFC is more suitable for automotive and residential power generation system because of its high mechanical strength, low gas permeability and applicability to mass production. Therefore, several types of coating has been applied to prevent corrosion and oxide film growth and to achieve more high durability. This work presents durability of coated metal bipolar plate for low temperature PEMFC which made for fuel cell vehicle. This results showed surface treatment increase long-term durability, even electric conductivity and corrosion resistance.

  • PDF

Influence of carbon black on electrochemical performance of graphene-based electrode for supercapacitor (슈퍼커패시터를 위한 그래핀 기반 전극의 전기화학적 특성에 대한 카본블랙 도입의 효과)

  • Kim, Ki-Seok;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.95.1-95.1
    • /
    • 2011
  • In this work, graphene was prepared by modified Hummers method and prepared graphene was applied to electrode materials for supercapacitor. In addition, to enhance the electrochemical performance of graphene, carbon black was deposited onto graphene via chemical reduction. The effect of the carbon black content incorporated on the electrochemical properties of the graphene-based electrodes was investigated. It was found that nano-scaled carbon black aggregates were deposited and dispersed onto the graphene by the chemical reduction of acid treated carbon black and graphite oxide. From the cyclic voltammograms, carbon black-deposited graphene (CB-GR) showed improved electrochemical performance, i.e., current density, quicker response, and better specific capacitance than that of pristine graphene. This indicates that the carbon black deposited onto graphene served as an conductive materials between graphene layers, leading to reducing the contact resistance of graphene and resulted in the increase of the charge transfer between graphene layers by bridge effect.

  • PDF

Temperature dependence on the growth and structure of carbon nanotubes by thermal chemical vapor deposition (열 CVD에 의한 탄소나노튜브 성장 및 구조의 온도의존성)

  • 이태재;류승철;이철진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.131-134
    • /
    • 2001
  • Vertically aligned carbon nanotubes are grown on iron-deposited silicon oxide substrates by thermal chemical vapor deposition of acetylene gas at the temperature range 750∼950$^{\circ}C$. As the growth temperature increases from 750 to 950$^{\circ}C$, the growth rate increases by 4 times and the average diameter also increases from 30 nm to 130 nm while the density increases progresively with the growth temperature and a higher degree of crystalline perfection can be achieved at 950$^{\circ}C$. This result demonstrates that the growth rate, diameter, density, and crystallinity of carbon nanotubes can be controlled with the growth temperature.

  • PDF

Three-dimensional Nanoporous Graphene-based Materials and Their Applications (3차원 나노 다공성 그래핀의 제조와 응용)

  • Jung, Hyun;Kang, Yein
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.243-255
    • /
    • 2019
  • Graphene, a two-dimensional material with a single atomic layer, has recently become a major research focus in various applications such as electronic devices, sensors, energy storage, catalysts, and adsorbents, because of its large theoretical surface area, excellent electrical conductivity, outstanding chemical stability, and good mechanical properties. Recently, 3D nanoporous graphene structures have received tremendous attention to expand the application of 2D graphene. Here, we overview the synthesis of 3D nanoporous graphene network structure with two-dimensional graphite oxide sheets, the control of porous parameters such as specific surface area, pore volume and pore size etc, and the modification of electronic structure by heteroatom doping along with its various applications. The 3D nanoporous graphene shows superior performance in diverse applications as a promising key material. Consequently, 3D nanoporous graphene can lead the future for advanced nanotechnology.

Preparation, Characterization, and Catalytic Applications of Graphene-palladium Nanocomposites

  • Hong, Yeong-Guk;Yu, Se-Hui;Park, Jun-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.262-262
    • /
    • 2012
  • Modifications of graphenes have been studied for catalytic applications due to their advantages such as high surface area, conductivity and thermal stability. In this research, individual graphene oxide (GO) sheets were exfoliated from graphite using Hummers and Offeman method. Pd nano-particles were deposited on the GO surface using Pd2+ ion exchange where hydroxyl groups on the GO act as nucleation sites of Pd nanoparticles and their dispersions. The thermal treatments of the Pd-GO in H2 flow produced Pd-Graphene nanocomposites. Their catalytic performances in Sonogashira reaction were investigated. Morphological and chemical structures of the GO, Pd-GO, and Pd-Graphene were investigated using FT-IR, XRD, TEM, STEM, and XPS. The catalytic performances have been investigated using microwave reactor.

  • PDF

SiO2/C-TiO2 microcone 복합체의 제조와 리튬이차전지 적용

  • Ha, Jae-Yun;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.71-71
    • /
    • 2018
  • 현재 상용화된 Graphite 음극활물질의 경우 낮은 부피당, 무게당 용량을 가지며 이는 다양한 분야에 활용하는데 제약이 있다. $SiO_2$는 Si에 비해서는 낮은 용량이지만 metal oxide 계열 중 가장 높은 이론용량을 가지고 있으며, 리튬 이온과 반응 시 큰 부피팽창을 하며, 절연체로 전기전도도가 낮아 리튬이 차전지의 음극재로 상용화가 어려운 단점이 있다. 본 연구에서는 TEOS를 이용하여 탄소와 $SiO_2$를 동시에 $TiO_2$ microcone 구조에 코팅하여 3가지 물질의 복합체를 형성하여 용량을 증대시키고 구조적 안전성을 향상시키는 방법을 소개 한다. 음극재의 특성은 고분해능 주사전자현미경 (HR-SEM), 고분해능 엑스선 회절분석기 (XRD), 를 통해 조사하였으며, 순환전류법 (CV), 충 방전 싸이클 분석을 통해 리튬이차전지의 작동원리와 보다 향상된 성능을 규명하였다.

  • PDF

Fabrication of YSZ-based Micro Tubular SOFC Single Cell using Electrophoretic Deposition Process

  • Yu, Seung-Min;Lee, Ki-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.315-319
    • /
    • 2015
  • Yttria-stabilized zirconia (YSZ)-based micro tubular SOFC single cells were fabricated by electrophoretic deposition (EPD) process. Stable slurries for the EPD process were prepared by adding phosphate ester (PE) as a dispersant in order to control the pH, conductivity, and zeta-potential. NiO-YSZ anode support, NiO-YSZ anode functional layer (AFL), and YSZ electrolyte were consecutively deposited on a graphite rod using the EPD process; materials were then co-sintered at $1400^{\circ}C$ for 4 h. The thickness of the deposited layer increased with increasing of the applied voltage and the deposition time. A YSZ-based micro tubular single cell fabricated by the EPD process exhibited a maximum power density of $0.3W/cm^2$ at $750^{\circ}C$.

Field emission from diamond-like carbon films studied by scanning anode

  • Ahn, S.H.;Jeon, D.;Lee, K.-R.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.54-58
    • /
    • 1999
  • We deposited diamond-like carbon (DLC) films using ion beam sputtering of a graphite target on flat substrates for use as a thin film field emitter. An n-type silicon wafer, titanium-coated silicon, and indium tin oxide (ITO) coated glass were used as a substrate. All films exhibited a sudden increase in the emission after a breakdown occurred at high voltage. The morphology of the films after the breakdown depended on the substrate. On ITO and Ti substrates, the DLC film peeled off upon breakdown, but on the Si substrate the surface melting due to breakdown resulted in the formation of various structures such as a sharp point, mound, and crater. By scanning the deformed surface with a tip anode, we found that the emission was concentrated at the deformed sites, indicating that the field enhancement due to the morphology change was responsible for the increased emission.

  • PDF

Characteristics of Fluorine-Doped Tin Oxide Film Coated on SUS 316 Bipolar Plates for PEMFCs (ECR-MOCVD를 이용하여 연료 전지 분리판에 코팅된 FTO막의 특성 연구)

  • Park, Ji-Hun;Hudaya, C.;Jeon, Bup-Ju;Byun, Dong-Jin;Lee, Joong-Kee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2011
  • Polymer electrolyte membrane fuel cells (PEMFCs) use the bipolar plate of various materials between electrolyte and contact electrode for the stable hydrogen ion exchange activation. The bipolar plate of various materials has representatively graphite and stainless steel. Specially, stainless steels have advantage for low cost and high product rate. In this study, SUS 316 was effectively coated with 600 nm thick F-doped tin oxide (SnOx:F) by electron cyclotron resonance-metal organic chemical vapor deposition and investigated in simulated fuel cell bipolar plates. The results showed that an F-doped tin oxide (SnOx:F) coating enhanced the corrosion resistance of the alloys in fuel cell bipolar plates, though the substrate steel has a significant influence on the behavior of the coating. Coating SUS 316 for fuel cell bipolar plates steel further improved the already excellent corrosion resistance of this material. After coating, the increased ICR values of the coated steels compared to those of the fresh steels. The SnOx:F coating seems to add an additional resistance to the native air-formed film on these stainless steels.