• Title/Summary/Keyword: graphite nano lubricant

Search Result 4, Processing Time 0.019 seconds

Comparative Study to the Tribological Characteristics of Graphite Nano Lubricants after Thermal Degradation (그라파이트 나노윤활유의 열화 후 윤활 특성 비교 연구)

  • Lee, Jae-Keun;Lee, Chang-Gun;Hwang, Yu-Jin;Choi, Young-Min;Park, Min-Chan;Choi, Cheol;Oh, Je-Myung
    • Tribology and Lubricants
    • /
    • v.24 no.4
    • /
    • pp.190-195
    • /
    • 2008
  • Many researchers have tried to improve the tribological characteristics of lubricant by adding various nano particles in the base lubricant. But the reliability evaluation of the lubricants are rarely performed in its real operation condition. In this study, the physical property and the tribological characteristics of the graphite nano lubricant were evaluated and compared with raw lubricant after thermal degrading. In order to evaluate the tirbological characteristics, the disk-on-disk tribotester was adopted to measure the friction coefficient of the graphite nano lubricants. Also the temperature variations of friction surfaces were measured by the thermocouple installed on the fixed plate in the test chamber of the tribotester. The kinematic viscosity was measured using a capillary viscometer on the temperatures of 40, 60 and $80^{\circ}C$. The results showed that the graphite nano lubricant had lower friction coefficient and less wear on the friction surfaces than raw lubricant. After thermally degrading, the friction coefficients of graphite nano lubricant increased, but the friction coefficients after thermal degradation were still maintained lower than those of raw lubricant.

Friction Characteristics of Warm a Forging Lubricant Containing Nano Graphite Powder (나노분말이 함유된 온간단조용 윤활제 마찰특성)

  • Kim, D.W.;Kim, Y.R.;Lee, G.A.;Choi, H.J.;Yun, D.J.;Shin, Y.C.;Lee, J.K.;Lim, S.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.13-18
    • /
    • 2012
  • During warm forging, materials are formed in the temperature range of $300^{\circ}C\sim900^{\circ}C$. In this temperature range, the friction between the forging die and the material is very high and has a negative effect on the forming process causing severe die wear and possible defects in the component because of stick-slip. Thus, lubrication characteristics are a very important factor for productivity during warm forging. In this paper, ring compression experiments were conducted to estimate the friction factor between the die and the materials as the main factor in characterizing the lubricant. Also, ring tests using normal graphite power as a lubricant coating system were compared with tests using nano graphite powder. The results confirm that the nano graphite is superior to the normal graphite in view of its lubricating effect. In addition, the friction factor (m) was estimated with respect to the amount of the nano graphite content in the lubricant. With 10 % nano graphite the friction factor had the lowest value as compared to other amounts. It can be concluded that the amount of the nano graphite in the coating system can be optimized to obtain the best lubrication condition between the die and the material using ring test experiments.

Manufacture of High Density Graphite Using Coal Tar Pitch (석탄계 피치를 이용한 고밀도 흑연 제조)

  • Cho, Kwang-Youn;Kim, Kyung-Ja;Riu, Doh-Hyung;Lim, Kwang-Hyun;Kim, Jung-Il;Shin, In-Cheol;Lim, Yun-Soo;Joo, Heyok-Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.839-845
    • /
    • 2006
  • Graphite has hexagonal closed packing structure with two bonding characteristics; (1) van der waals bonding between c axis, and (2) covalent bonding in the a and b axis. The weak van der waals bonds cause self-lubricant property, and the strong covalent bonds cause excellent electric and thermal conductivity. Furthermore, graphite is chemically very inert because of the material composed of only carbon elements. Thus, graphite is very useful for mechanical sealing materials. However, Graphite have porous microstructure because starting materials of graphite produce many volatile during the manufacturing processes. This causes low density of graphite, which is unsuitable for the mechanical sealing materials. Thus, further impregnation process is generally needed to enhance the graphite density. In this work, high density graphite is prepared with the principle of densification when coke and pitch binder, prepared from thermal treatment of coal tar pitch, become dehydrogenation during graphitization or carbonization.

A Study on Friction and Wear Characteristics of Nano-size Carbon (나노 사이즈 탄소입자의 마찰마모 특성에 관한 연구)

  • Jung, Kwang-Woo;Choi, Jeong-Kyu;Moon, Seong-Yong;Chung, Keun-Woo
    • Tribology and Lubricants
    • /
    • v.24 no.5
    • /
    • pp.264-268
    • /
    • 2008
  • A large number of additives have been used with the efforts of improving the performance of lubricants used along with the development of internal combustion engine. In this study, nano-sized graphite was used as liquid-lubricant additive. In order to disperse graphite into oil, we esterified the nano-carbon manufactured by our company with various types of alcohol. After measuring the anti-wear in accordance with the types of alcohol and added concentration, it has been found that its anti-wear/friction decrease has been improved in case of adding 0.1% of the sample composed with C12/14 mixed alcohol & hexadecanol.