• Title/Summary/Keyword: graph construction

Search Result 203, Processing Time 0.02 seconds

단위유량도와 비수갑문 단면 및 방조제 축조곡선 결정을 위한 조속계산 (Calculation of Unit Hydrograph from Discharge Curve, Determination of Sluice Dimension and Tidal Computation for Determination of the Closure curve)

  • 최귀열
    • 한국농공학회지
    • /
    • 제7권1호
    • /
    • pp.861-876
    • /
    • 1965
  • During my stay in the Netherlands, I have studied the following, primarily in relation to the Mokpo Yong-san project which had been studied by the NEDECO for a feasibility report. 1. Unit hydrograph at Naju There are many ways to make unit hydrograph, but I want explain here to make unit hydrograph from the- actual run of curve at Naju. A discharge curve made from one rain storm depends on rainfall intensity per houre After finriing hydrograph every two hours, we will get two-hour unit hydrograph to devide each ordinate of the two-hour hydrograph by the rainfall intensity. I have used one storm from June 24 to June 26, 1963, recording a rainfall intensity of average 9. 4 mm per hour for 12 hours. If several rain gage stations had already been established in the catchment area. above Naju prior to this storm, I could have gathered accurate data on rainfall intensity throughout the catchment area. As it was, I used I the automatic rain gage record of the Mokpo I moteorological station to determine the rainfall lntensity. In order. to develop the unit ~Ydrograph at Naju, I subtracted the basic flow from the total runoff flow. I also tried to keed the difference between the calculated discharge amount and the measured discharge less than 1O~ The discharge period. of an unit graph depends on the length of the catchment area. 2. Determination of sluice dimension Acoording to principles of design presently used in our country, a one-day storm with a frequency of 20 years must be discharged in 8 hours. These design criteria are not adequate, and several dams have washed out in the past years. The design of the spillway and sluice dimensions must be based on the maximun peak discharge flowing into the reservoir to avoid crop and structure damages. The total flow into the reservoir is the summation of flow described by the Mokpo hydrograph, the basic flow from all the catchment areas and the rainfall on the reservoir area. To calculate the amount of water discharged through the sluiceCper half hour), the average head during that interval must be known. This can be calculated from the known water level outside the sluiceCdetermined by the tide) and from an estimated water level inside the reservoir at the end of each time interval. The total amount of water discharged through the sluice can be calculated from this average head, the time interval and the cross-sectional area of' the sluice. From the inflow into the .reservoir and the outflow through the sluice gates I calculated the change in the volume of water stored in the reservoir at half-hour intervals. From the stored volume of water and the known storage capacity of the reservoir, I was able to calculate the water level in the reservoir. The Calculated water level in the reservoir must be the same as the estimated water level. Mean stand tide will be adequate to use for determining the sluice dimension because spring tide is worse case and neap tide is best condition for the I result of the calculatio 3. Tidal computation for determination of the closure curve. During the construction of a dam, whether by building up of a succession of horizontael layers or by building in from both sides, the velocity of the water flowinii through the closing gapwill increase, because of the gradual decrease in the cross sectional area of the gap. 1 calculated the . velocities in the closing gap during flood and ebb for the first mentioned method of construction until the cross-sectional area has been reduced to about 25% of the original area, the change in tidal movement within the reservoir being negligible. Up to that point, the increase of the velocity is more or less hyperbolic. During the closing of the last 25 % of the gap, less water can flow out of the reservoir. This causes a rise of the mean water level of the reservoir. The difference in hydraulic head is then no longer negligible and must be taken into account. When, during the course of construction. the submerged weir become a free weir the critical flow occurs. The critical flow is that point, during either ebb or flood, at which the velocity reaches a maximum. When the dam is raised further. the velocity decreases because of the decrease\ulcorner in the height of the water above the weir. The calculation of the currents and velocities for a stage in the closure of the final gap is done in the following manner; Using an average tide with a neglible daily quantity, I estimated the water level on the pustream side of. the dam (inner water level). I determined the current through the gap for each hour by multiplying the storage area by the increment of the rise in water level. The velocity at a given moment can be determined from the calcalated current in m3/sec, and the cross-sectional area at that moment. At the same time from the difference between inner water level and tidal level (outer water level) the velocity can be calculated with the formula $h= \frac{V^2}{2g}$ and must be equal to the velocity detertnined from the current. If there is a difference in velocity, a new estimate of the inner water level must be made and entire procedure should be repeated. When the higher water level is equal to or more than 2/3 times the difference between the lower water level and the crest of the dam, we speak of a "free weir." The flow over the weir is then dependent upon the higher water level and not on the difference between high and low water levels. When the weir is "submerged", that is, the higher water level is less than 2/3 times the difference between the lower water and the crest of the dam, the difference between the high and low levels being decisive. The free weir normally occurs first during ebb, and is due to. the fact that mean level in the estuary is higher than the mean level of . the tide in building dams with barges the maximum velocity in the closing gap may not be more than 3m/sec. As the maximum velocities are higher than this limit we must use other construction methods in closing the gap. This can be done by dump-cars from each side or by using a cable way.e or by using a cable way.

  • PDF

조선시대 궁궐 도배지 특성 연구 - 경복궁, 창덕궁, 칠궁을 중심으로 - (A study on characteristics of palace wallpaper in the Joseon Dynasty - Focusing on Gyeongbokgung Palace, Changdeokgung Palace and Chilgung Palace -)

  • 김지원;김지선;김명남;정선화
    • 헤리티지:역사와 과학
    • /
    • 제56권1호
    • /
    • pp.80-97
    • /
    • 2023
  • 본 연구에서는 조선시대 후기부터 현재까지 보존된 경복궁, 창덕궁 그리고 칠궁 내 일부 전각의 도배지를 채취하여 조선 왕실에서 도배지로 사용한 종이의 종류와 특징을 파악하고자 하였다. 이에 첫 번째로, 고문헌 조사를 바탕으로 왕실에서 사용된 도배지 기록을 통해 왕실에서의 도배 특성을 확인하였다. 두 번째로, 건립 시기가 비교적 분명한 전각을 대상으로 현장 조사를 실시하여 시료확보 후 초배지 분석을 실시하였다. 따라서 왕실 도배지로 활용된 한지의 주원료를 확인하였으며, 청색 장식지 분석을 통해 격식을 갖춰야 하는 공간에 사용된 청색 발색물질(염료·안료)의 종류를 파악하였다. 분석을 통해 확인한 결과를 토대로 조선시대 궁궐 도배지와 관련한 고문헌 기록과 대조함으로써 문헌의 기록과 현존 도배지 실물을 확인하고, 향후 궁궐 도배지의 보수 시 문화재 복원의 기초자료를 제공하고자 하였다. 17~20세기 영건의궤류 36건 등에 기록된 도배 관련 내용을 추출하여 시기별 도배지 종류 변화, 사용처에 따른 도배지 종류 등의 내용을 검토한 결과, 의궤 제작용 한지와 도배용 한지의 명칭이 다르지 않아 조선시대에는 문서지와 도배지를 구분하지 않고 사용했음을 알 수 있었다. 또한 시대별 도배지의 종류는 차이가 있지만 백지, 후백지, 저주지, 초주지, 각장이 도배의 기저를 이루는 것은 조선 말기까지 지속된 것이 확인된다. 궁궐 벽체와 직접 붙어있던 면의 초배지를 대상으로 섬유의 형태학적 특성 및 정색 반응(KS M ISO 9184-4: 그라프 "C" 염색 시험)을 통해 섬유 식별을 실시한 결과, 왕실에서 도배지로 활용된 한지의 주원료를 확인하였으며 전각의 건립 시기에 따라 당시 한지를 제작하는 데 사용한 지료의 원재료를 파악하였다. 또한 청색 장식지의 발색원료를 광학현미경, 자외-가시광 분광분석(UV-Vis), X선 회절분석(XRD)을 통해 분석한 결과 격식을 갖춰야 하는 공간에 사용된 청색 장식지의 염료 및 안료의 종류를 파악하였으며 청색을 내기 위한 원료로서 쪽, 청금석, 코발트블루 등이 사용된 것이 확인되었다.

소의 경제형질 관련 유전자 네트워크 분석 시스템 구축 (Construction of Gene Network System Associated with Economic Traits in Cattle)

  • 임다정;김형용;조용민;채한화;박종은;임규상;이승수
    • 생명과학회지
    • /
    • 제26권8호
    • /
    • pp.904-910
    • /
    • 2016
  • 가축의 경제형질은 대부분 복합형질 상태이며, 많은 유전자와 생물대사회로에 의해 조절된다. 시스템 생물학은 생명현상을 하나의 복합체로 가정하고, 형질에 관여하는 유전자들에 대한 기능적 관계를 분석하는 학문이다. 유전자 네트워크는 시스템 생물학의 하나의 연구분야로써, 유전자 기능의 상관관계를 지도화하여 오믹스 데이터를 통합 분석하여 해석한다. 유전자 네트워크는 단백질-단백질 상호작용, 공발현, 조절인자, 유전자형 기반으로 다양한 유전자의 기능적 상호작용을 표현할 수 있다. 또한, 네트워크를 구성하기 위해서는 유전자 간 연결 정도에 가중치를 두거나, 인접한 유전자 수 계산 등의 네트워크 토폴로지 알고리즘이 적용된다. 가축에서는 이러한 연구가 단형질에 대한 유전자 발현, 단백질 상호작용 등에 국한되어 있는 실정이다. 본 논문에서는 유전자 공발현 네트워크와 단백질-단백질 상호작용 네트워크 분석법을 확립하고 소의 102개 경제형질에 대하여 유전자 네트워크 분석 결과에 대한 데이터베이스를 구축하였다. 102개의 경제형질은 Animal Trait Ontology (ATO) 명명법에 의하여 분류하여 제공하였다. 각 형질에 포함된 유전자 리스트는 Animal QTL database에서 제공하는 양적유전형질좌위의 물리적 위치에 존재하는 유전자군을 추출하였다. 유전자 공발현 네트워크는 R의 WGCNA 패키지를 활용하였으며, 단백질-단백질 상호작용 네트워크는 Human Protein Reference Database에서 사람과 소의 orthologous group에 포함된 유전자를 대상으로 단백질 상호작용 관계를 규명하였다. 네트워크 분석 결과는 관계형 테이블로 구축하였으며, 구축한 데이터베이스를 관련 연구진에게 공유하기 위하여 웹 기반의 유전자 네트워크 가시화 시스템을 구현하였다(http://www.nabc.go.kr/cg). 웹 데이터베이스 구현을 위하여 Ontle 프로그램을 활용하여 다양한 방식으로 유전자 네트워크 가시화 작업을 수행하였다. 이 시스템을 통하여 사용자는 관련 형질의 후보 유전자군 탐색, 유전자 네트워크 분석 결과, 유전자 사이의 기능적 연결관계를 손쉽게 살펴볼 수 있게 될 것이다.