• Title/Summary/Keyword: graph classification

Search Result 160, Processing Time 0.026 seconds

THE CLASSIFICATION OF COMPLETE GRAPHS $K_n$ ON f-COLORING

  • ZHANG XIA;LIU GUIZHEN
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.127-133
    • /
    • 2005
  • An f-coloring of a graph G = (V, E) is a coloring of edge set E such that each color appears at each vertex v $\in$ V at most f(v) times. The minimum number of colors needed to f-color G is called the f-chromatic index $\chi'_f(G)$ of G. Any graph G has f-chromatic index equal to ${\Delta}_f(G)\;or\;{\Delta}_f(G)+1,\;where\;{\Delta}_f(G)\;=\;max\{{\lceil}\frac{d(v)}{f(v)}{\rceil}\}$. If $\chi'_f(G)$= ${\Delta}$f(G), then G is of $C_f$ 1 ; otherwise G is of $C_f$ 2. In this paper, the classification problem of complete graphs on f-coloring is solved completely.

Disassembly and Classification for Recovery of EOL Products

  • Min, Sun-Dong;Matsuoka, Shinobu;Muraki, Masaaki
    • Industrial Engineering and Management Systems
    • /
    • v.2 no.1
    • /
    • pp.35-44
    • /
    • 2003
  • Recovery of end-of-life (EOL) products is an environmentally and economically sound way to achieve many of the goals of sustainable development. Many product recovery systems are dependent upon destructive disassembly such as shredding, which undesirably causes a large volume of shredder dust and makes parts reuse impossible. Although non-destructive disassembly has been considered as an alternative for solving the problems, the classification of disassembled items has not been sufficiently investigated. In this paper, we propose a model that mathematically optimizes the disassembly and classification of EOL products. Based on the AND/OR graph that illustrates all possible disassembly sequences of a given product, we identify the physical properties that are considered as constraints in the model. As a result of the solution procedure, the recovery problem can be transformed into a mixed integer linear programming (MILP) model. We show an example that illustrates the concept of our model.

Classification Method based on Graph Neural Network Model for Diagnosing IoT Device Fault (사물인터넷 기기 고장 진단을 위한 그래프 신경망 모델 기반 분류 방법)

  • Kim, Jin-Young;Seon, Joonho;Yoon, Sung-Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.9-14
    • /
    • 2022
  • In the IoT(internet of things) where various devices can be connected, failure of essential devices may lead to a lot of economic and life losses. For reducing the losses, fault diagnosis techniques have been considered an essential part of IoT. In this paper, the method based on a graph neural network is proposed for determining fault and classifying types by extracting features from vibration data of systems. For training of the deep learning model, fault dataset are used as input data obtained from the CWRU(case western reserve university). To validate the classification performance of the proposed model, a conventional CNN(convolutional neural networks)-based fault classification model is compared with the proposed model. From the simulation results, it was confirmed that the classification performance of the proposed model outweighed the conventional model by up to 5% in the unevenly distributed data. The classification runtime can be improved by lightweight the proposed model in future works.

Face Recognition using Karhunen-Loeve projection and Elastic Graph Matching (Karhunen-Loeve 근사 방법과 Elastic Graph Matching을 병합한 얼굴 인식)

  • 이형지;이완수;정재호
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.231-234
    • /
    • 2001
  • This paper proposes a face recognition technique that effectively combines elastic graph matching (EGM) and Fisherface algorithm. EGM as one of dynamic lint architecture uses not only face-shape but also the gray information of image, and Fisherface algorithm as a class specific method is robust about variations such as lighting direction and facial expression. In the proposed face recognition adopting the above two methods, the linear projection per node of an image graph reduces dimensionality of labeled graph vector and provides a feature space to be used effectively for the classification. In comparison with a conventional method, the proposed approach could obtain satisfactory results in the perspectives of recognition rates and speeds. Especially, we could get maximum recognition rate of 99.3% by leaving-one-out method for the experiments with the Yale Face Databases.

  • PDF

Fast Handwriting Recognition Using Model Graph (모델 그래프를 이용한 빠른 필기 인식 방법)

  • Oh, Se-Chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.892-898
    • /
    • 2012
  • Rough classification methods are used to improving the recognition speed in many character recognition problems. In this case, some irreversible result can occur by an error in rough classification. Methods for duplicating each model in several classes are used in order to reduce this risk. But the errors by rough classfication can not be completely ruled out by these methods. In this paper, an recognition method is proposed to increase speed that matches models selectively without any increase in error. This method constructs a model graph using similarity between models. Then a search process begins from a particular point in the model graph. In this process, matching of unnecessary models are reduced that are not similar to the input pattern. In this paper, the proposed method is applied to the recognition problem of handwriting numbers and upper/lower cases of English alphabets. In the experiments, the proposed method was compared with the basic method that matches all models with input pattern. As a result, the same recognition rate, which has shown as the basic method, was obtained by controlling the out-degree of the model graph and the number of maintaining candidates during the search process thereby being increased the recognition speed to 2.45 times.

Cable damage identification of cable-stayed bridge using multi-layer perceptron and graph neural network

  • Pham, Van-Thanh;Jang, Yun;Park, Jong-Woong;Kim, Dong-Joo;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.241-254
    • /
    • 2022
  • The cables in a cable-stayed bridge are critical load-carrying parts. The potential damage to cables should be identified early to prevent disasters. In this study, an efficient deep learning model is proposed for the damage identification of cables using both a multi-layer perceptron (MLP) and a graph neural network (GNN). Datasets are first generated using the practical advanced analysis program (PAAP), which is a robust program for modeling and analyzing bridge structures with low computational costs. The model based on the MLP and GNN can capture complex nonlinear correlations between the vibration characteristics in the input data and the cable system damage in the output data. Multiple hidden layers with an activation function are used in the MLP to expand the original input vector of the limited measurement data to obtain a complete output data vector that preserves sufficient information for constructing the graph in the GNN. Using the gated recurrent unit and set2set model, the GNN maps the formed graph feature to the output cable damage through several updating times and provides the damage results to both the classification and regression outputs. The model is fine-tuned with the original input data using Adam optimization for the final objective function. A case study of an actual cable-stayed bridge was considered to evaluate the model performance. The results demonstrate that the proposed model provides high accuracy (over 90%) in classification and satisfactory correlation coefficients (over 0.98) in regression and is a robust approach to obtain effective identification results with a limited quantity of input data.

Improving Embedding Model for Triple Knowledge Graph Using Neighborliness Vector (인접성 벡터를 이용한 트리플 지식 그래프의 임베딩 모델 개선)

  • Cho, Sae-rom;Kim, Han-joon
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.67-80
    • /
    • 2021
  • The node embedding technique for learning graph representation plays an important role in obtaining good quality results in graph mining. Until now, representative node embedding techniques have been studied for homogeneous graphs, and thus it is difficult to learn knowledge graphs with unique meanings for each edge. To resolve this problem, the conventional Triple2Vec technique builds an embedding model by learning a triple graph having a node pair and an edge of the knowledge graph as one node. However, the Triple2 Vec embedding model has limitations in improving performance because it calculates the relationship between triple nodes as a simple measure. Therefore, this paper proposes a feature extraction technique based on a graph convolutional neural network to improve the Triple2Vec embedding model. The proposed method extracts the neighborliness vector of the triple graph and learns the relationship between neighboring nodes for each node in the triple graph. We proves that the embedding model applying the proposed method is superior to the existing Triple2Vec model through category classification experiments using DBLP, DBpedia, and IMDB datasets.

Comparison of Objective Functions for Feed-forward Neural Network Classifiers Using Receiver Operating Characteristics Graph

  • Oh, Sang-Hoon;Wakuya, Hiroshi
    • International Journal of Contents
    • /
    • v.10 no.1
    • /
    • pp.23-28
    • /
    • 2014
  • When developing a classifier using various objective functions, it is important to compare the performances of the classifiers. Although there are statistical analyses of objective functions for classifiers, simulation results can provide us with direct comparison results and in this case, a comparison criterion is considerably critical. A Receiver Operating Characteristics (ROC) graph is a simulation technique for comparing classifiers and selecting a better one based on a performance. In this paper, we adopt the ROC graph to compare classifiers trained by mean-squared error, cross-entropy error, classification figure of merit, and the n-th order extension of cross-entropy error functions. After the training of feed-forward neural networks using the CEDAR database, the ROC graphs are plotted to help us identify which objective function is better.

Measurement of graphs similarity using graph centralities

  • Cho, Tae-Soo;Han, Chi-Geun;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.57-64
    • /
    • 2018
  • In this paper, a method to measure similarity between two graphs is proposed, which is based on centralities of the graphs. The similarity between two graphs $G_1$ and $G_2$ is defined by the difference of distance($G_1$, $G_{R_1}$) and distance($G_2$, $G_{R_2}$), where $G_{R_1}$ and $G_{R_2}$ are set of random graphs that have the same number of nodes and edges as $G_1$ and $G_2$, respectively. Each distance ($G_*$, $G_{R_*}$) is obtained by comparing centralities of $G_*$ and $G_{R_*}$. Through the computational experiments, we show that it is possible to compare graphs regardless of the number of vertices or edges of the graphs. Also, it is possible to identify and classify the properties of the graphs by measuring and comparing similarities between two graphs.

A Study about Learning Graph Representation on Farmhouse Apple Quality Images with Graph Transformer (그래프 트랜스포머 기반 농가 사과 품질 이미지의 그래프 표현 학습 연구)

  • Ji Hun Bae;Ju Hwan Lee;Gwang Hyun Yu;Gyeong Ju Kwon;Jin Young Kim
    • Smart Media Journal
    • /
    • v.12 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • Recently, a convolutional neural network (CNN) based system is being developed to overcome the limitations of human resources in the apple quality classification of farmhouse. However, since convolutional neural networks receive only images of the same size, preprocessing such as sampling may be required, and in the case of oversampling, information loss of the original image such as image quality degradation and blurring occurs. In this paper, in order to minimize the above problem, to generate a image patch based graph of an original image and propose a random walk-based positional encoding method to apply the graph transformer model. The above method continuously learns the position embedding information of patches which don't have a positional information based on the random walk algorithm, and finds the optimal graph structure by aggregating useful node information through the self-attention technique of graph transformer model. Therefore, it is robust and shows good performance even in a new graph structure of random node order and an arbitrary graph structure according to the location of an object in an image. As a result, when experimented with 5 apple quality datasets, the learning accuracy was higher than other GNN models by a minimum of 1.3% to a maximum of 4.7%, and the number of parameters was 3.59M, which was about 15% less than the 23.52M of the ResNet18 model. Therefore, it shows fast reasoning speed according to the reduction of the amount of computation and proves the effect.