• Title/Summary/Keyword: granular soil

Search Result 247, Processing Time 0.018 seconds

Estimation of ultimate bearing capacity of shallow foundations resting on cohesionless soils using a new hybrid M5'-GP model

  • Khorrami, Rouhollah;Derakhshani, Ali
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.127-139
    • /
    • 2019
  • Available methods to determine the ultimate bearing capacity of shallow foundations may not be accurate enough owing to the complicated failure mechanism and diversity of the underlying soils. Accordingly, applying new methods of artificial intelligence can improve the prediction of the ultimate bearing capacity. The M5' model tree and the genetic programming are two robust artificial intelligence methods used for prediction purposes. The model tree is able to categorize the data and present linear models while genetic programming can give nonlinear models. In this study, a combination of these methods, called the M5'-GP approach, is employed to predict the ultimate bearing capacity of the shallow foundations, so that the advantages of both methods are exploited, simultaneously. Factors governing the bearing capacity of the shallow foundations, including width of the foundation (B), embedment depth of the foundation (D), length of the foundation (L), effective unit weight of the soil (${\gamma}$) and internal friction angle of the soil (${\varphi}$) are considered for modeling. To develop the new model, experimental data of large and small-scale tests were collected from the literature. Evaluation of the new model by statistical indices reveals its better performance in contrast to both traditional and recent approaches. Moreover, sensitivity analysis of the proposed model indicates the significance of various predictors. Additionally, it is inferred that the new model compares favorably with different models presented by various researchers based on a comprehensive ranking system.

Field behaviour geotextile reinforced sand column

  • Tandel, Yogendra K.;Solanki, Chandresh H.;Desai, Atul K.
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.195-211
    • /
    • 2014
  • Stone columns (or granular column) have been used to increase the load carrying capacity and accelerating consolidation of soft soil. Recently, the geosynthetic reinforced stone column technique has been developed to improve the load carrying capacity of the stone column. In addition, reinforcement prevents the lateral squeezing of stone in to surrounding soft soil, helps in easy formation of stone column, preserve frictional properties of aggregate and drainage function of the stone column. This paper investigates the improvement of load carrying capacity of isolated ordinary and geotextile reinforced sand column through field load tests. Tests were performed with different reinforcement stiffness, diameter of sand column and reinforcement length. The results of field load test indicated an improved load carrying capacity of geotextile reinforced sand column over ordinary sand column. The increase in load carrying capacity depends upon the sand column diameter, stiffness of reinforcement and reinforcement length. Also, the partial reinforcement length about two to four time's sand column diameter from the top of the column was found to significant effect on the performance of sand column.

Feasibility of Granular Activated Charcoal as a Detector in Fluorescent Tracer Tests (입상 활성탄을 이용한 형광물질 추적자시험 적용성 연구)

  • Lee, Jin-Yong;Hwang, Hyoun-Tae;Yi, Myeong-Jae;Kim, Yong-Cheol;Yum, Byoung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.86-93
    • /
    • 2007
  • In recent tests using tracer have been frequently conducted by fluorescent tracers. In this study, granular activated charcoal (GAC) as a detector for the fluorescent tracers (rhodamine WT and uranine) was investigated through laboratory and field tests. In the laboratory tests, tracer concentrations of rhodamine WT and uranine determined by the GAC were slightly different from those of standard solutions but they were excellent in linearity. Results show that GAC is excellent as tracer detector when concentration of the fluorescent tracers is greater than 10 & micro; g/L whileas no obvious differences in mixed solutions of the two tracers due to interferences. Compared to conventional methods of water sampling, field results shows a high potential of GAC as a tracer in the field. Our results also show that wet analysis is better for the lower concentrations of tracers whileas dry analysis is good for high concentrations of tracers. This study demonstrates that fluorescent tracer detection using the GAC is very useful and economical for a hydraulic connection between target areas and very longer period of the tracer test.

Effect of Artificial Granular Zeolite(AGZ) on Purification of Heavy Metals in Wastewater and Alleviation or Rice Seeding Growth Damage (입상 인공제올라이트를 이용한 중금속 폐수 정화와 벼 유묘 생육장해 경감)

  • Lee, Deog-Bae;Lee, Kyeong-Bo;Lee, Sang-Bok;Kim, Jae-Duk;Henmi, Teruo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.446-451
    • /
    • 1999
  • This study was carried out to investigate some mineralogical characteristics of Artificial Granular Zeolite (AGZ) and effect of AGZ on purification and alleviation of rice seedling damages of mine wastewater containing heavy metals. AGZ had mainly representative Na-P1 peaks and some $C_3S$ peaks of Portland cement in X-ray diffractogram. Differential thermal analysis represented that AGZ had weak endothermic peak around $130^{\circ}C$ and new deep endothermic peak around $750^{\circ}C$ as compared to powdery artificial zeolite. The ranking of heavy metals removals by AGZ, was lead> copper> cadmium> zinc in the synthetic wastewater. Root growth of rice seedling was greatly inhibited in the mine wastewater, and died after all. As AGZ treated into the mine wastewater with the ratio 1 : 50 (W : V) for one day or 1 : 100 for 4 days, the concentrations of heavy metals in the mine wastewater were decreased to below the critical concentration for agricultural use. And rice seedlings were grew with little damages in the purified water by AGZ.

  • PDF

Effect of Fines Content on the Cyclic Shear Characteristics of Sand-clay Mixtures (점토혼합모래의 반복전단특성에 대한 세립분 함유율의 영향)

  • Kim, Uk-Gie;Hyodo, Masayuki;Ahn, Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.51-59
    • /
    • 2008
  • In this study, cyclic shear characterics of sand-clay mixtures were analyzed. In order to perform cyclic triaxial tests on sand clay mixtures, natural clays with activity and silica sand were mixed variously to reproduce soils with wide range of grain size compositions. Test specimens with various fines contents were prepared by the moisture compaction and pre-consolidation methods, while paying attention to the void ratio expressed in terms of the sand structure and clay structures, and undrained cyclic shear tests were performed. In the test results, cyclic shear strength decreased with increasing of sand granular void ratio below 20% of fine contents. When the granular void ratio of the test specimen exceeded the maximum void ratio of the silica sand, the clay matrix dominated the soil structure, and soil structures were not influenced by compaction energy. It was observed that, the matrix structure of the coarse particles has great effect on the undrained cyclic shear strength characteristics for sand-clay mixtures, and therefore, it is more appropriate to pay more attention to the density of the sand structure, rather than to the fines content.

Effect of Fine Content on the Monotonic Shear Behavior of Sand-Clay Mixtures (점토와 모래의 혼합토의 정적 전단거동에 대한 세립분 함유율의 영향)

  • Kim, Uk-Gie;Masayuki, Hyodo;Beak, Won-Jin;Ahn, Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.91-100
    • /
    • 2007
  • In most design codes, soils are classified as either sand or clay, and appropriate design equations are used to represent their behavior. For example, the behavior of sandy soils is expressed in terms of the relative density, whereas consistency limits are often used for clays. However, sand-clay mixtures, which are typically referred to as intermediate soils, cannot be easily categorized as either sand or clay and therefore a unified interpretation of how the soil will behave at the transition point, i.e., from sandy behavior when fines are low to clay behavior for high fines content, is necessary. In this study, active natural clays are mixed with sand, and the fines content varied in order to produce different structures, ranging from one state where only sand particles form the soil structure to another where the matrix of fines make-up the structure. While paying attention to the granular void ratio in order to clarify the shear properties of sand-clay mixtures with increasing fines content monotonic, shear tests were performed on isotropically, and anisotropically consolidated specimens. From the test results, it was observed that the monotonic shear strength of sand-clay mixtures is dependent on the granular void ratio.

Undrained Shear Behavior of Sandy Soil Mixtures (사질혼합토의 비배수 전단거동 특성)

  • Kim, Ukgie;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.13-24
    • /
    • 2011
  • In the part of geotechnical engineering, soils are classified as either the coarse grained soil or the fine-grained soil following the fine content($F_c$=50%) according to the granularity, and appropriate design codes are used respectively to represent their mechanical behaviour. However, sand-clay mixtures, which are typically referred to as intermediate soils, cannot be easily categorized as either sand or clay. In this study, several monotonic undrained shear tests were carried out on Silica sand fine mixtures with various proportions, and a wide range of soil structures, ranging from one with sand dominating the soil structure to one with fines controlling the behaviour, were prepared using compaction method or pre-consoldation methods in prescribed energy. The shear strength of mixtures below the threshold fines content is observed that as the fines content increases, maximum deviator stress ratio decrease for dense samples while an increase is noted for loose samples. Then, by using the concept of fines content and granular void ratio, the monotonic shear strength of the mixtures was estimated. It was found that the shear behavior of mixtures is greatly dependent on the skeleton structure of sand particles.

Analysis on the Rainfall Triggered Slope Failure with a Variation of Soil Layer Thickness: Flume Tests (강우로 인한 조립토 사면에서의 토층 두께 변화에 따른 사면의 활동 분석: 실내 모형실험)

  • SaGong, Myung;Yoo, Jea-Ho;Lee, Sung-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.91-103
    • /
    • 2009
  • Slope failure depends upon the climatic features related to related rainfall, structural geology and geomorphological features as well as the variation of the mechanical behaviors of soil constituting a slope. In this paper, among many variables, effects of soil layer thickness on the slope failure process, and variations of matric suction and volumetric water content were observed. When the soil layer is relatively thick, the descending wetting front decreases matric suction and the observed matric suction reaches to "0" value. When the wetting front reaches to the impermeable boundary, the bottom surface of steel soil box, ascending wetting front was observed. This observation can be postulated to be the effects of various sizes of pores. When macro size pores exist, the capillary effects can be reduced and infilling of pore will be limited. The partially filled pores would be filled with water during the ascending of the wetting front, which bounces from the impermeable boundary. This assumption has been assured from the observation of variation of the volumetric water contents at different depth. When the soil layer is thick (thickness = 20 cm), for granular material, erosion is a cause triggering the slope failure. It has been found that the initiation of erosion occurs when the top soil is fully saturated. Meanwhile, when the soil layer is shallow (thickness = 10 cm), slope slides as en mass. The slope failure for this condition occurs when the wetting front reaches to the interface between the soil layer and steel soil box. As the wetting front approaches to the bottom of soil layer, reduction of shear resistance along the boundary and increase of the unit weight due to the infiltration occur and these produce complex effects on the slope failure processes.

Effects of the Granular Silicate Fertilizer(GSF) Application on the Rice Growth and Quality (수도 생육 및 미질에 대한 입상규산질 비료의 시용 효과)

  • Chang, Ki-Woon;Hong, Joo-Hwa;Lee, Jong-Eun;Lee, Jong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.3
    • /
    • pp.151-156
    • /
    • 2006
  • This study was conducted to investigate effects of granular silicate fertilizer(GSF) on growth, nutrient uptake and quality rice during cultivation. Then the chemical properties of paddy soil used for the cultivation test were pH 5.9, O.M. $13.7g\;kg^{-1}$, avail. $P_2O_5$ $48.9mg\;kg^{-1}$, and avail. $SiO_2$ $79.8mg\;kg^{-1}$. The amounts of GSF treated in the paddy soil were 0, 76, 185, 229, 413 and $489kg\;10a^{-1}$ for control, S-100(control amounts of soil available $SiO_2$), S-130, S-160, S-190 and for S-210 treatments, respectively. At results of rice growth leaf length and tiller number were more remarkable results at treatments of GSF than control. The leaf length of rice at S-100 treatment was the highest as 99.4 cm and the tiller number was the highest as 18.9 ear number at S-130 treatment. At the results of rice yield parameters, the grain and straw yield of rice were showed that all of the GSF applicated treatments were more predominant level than at the control, especially their levels were the highest values as 841.5 and $815.2kg\;10a^{-1}$ at the S-160 treatment, respectively. Also at the results of quality parameters on rice grain, a perfect kernel in the GSF applicated treatments was more increased than at control, but a broken kernel rate was inversely decreased. In results of these aspects, the chemical properties of white rice and the taste of rice by the Toyo MA-90A(Toyo rice quality taster) instrument, amylose content was the lowest value as 18.7%(generally about 20%) at S-160 treatment. Also, Mg/K ratio and rice taste value were the highest level as 0.58 and 69.1 at the S-190 and S-160 treatments respectively. The harvest yields of rice at S-160 and S-190 treatments from these growth factors were more produced about 8-13% than control. Therefore, the GSF application for rice cultivation from these results should be expected to obtain the positive effects as enhancement of rice harvest yield and improvement of quality on the cooked rice taste. Amount of GSF application could be recommended as around $200mg\;kg^{-1}$ for optimal and economical rice cultivation.

Numerical study on the optimal position of a pile for stabilization purpose of a slope

  • Boulfoul, Khalifa;Hammoud, Farid;Abbeche, Khelifa
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.401-411
    • /
    • 2020
  • The paper describes the influence of pile reinforcement on the stability of the slope behaviour, and the exploitation of the results of in situ measurements will be conducted. In the second part, a 2D numerical modelling will be conducted by using the finite element code PLAXIS2D; in order to validate the proposed modelling approach by comparing the numerical results with the measurements results carried out on the slides studied; to study the effect of positioning of piles as a function of the shear parameters of the supported soil on the behaviour of the soil. For various shear strength of the soil a row of pile position is found, at which the piles offer the maximum contribution to slope stability. The position of piles is found to influence the safety factor in granular soil whereas it shows a slight influence on the safety factor in coherent soil. The results also indicate that the ideal position for such stabilizing piles is in the middle height of the slope. Comparison of results of present study with literature from publication: indicated that to reach the maximum stability of slope, the pile must be installed with Lx/L ratio (0.37 to 0.62) and the inclination must be between 30° to 60°. Even, after a certain length of the pile, the increasing will be useless. The application of the present approach to such a problem is located at the section of PK 210+480 to 210+800 of the Algerian East-West Highway.