• 제목/요약/키워드: granular filtration

검색결과 57건 처리시간 0.021초

입상여과에서 입자물질의 부착 (Particle Attachment in Granular Media Filtration)

  • 김진근
    • 상하수도학회지
    • /
    • 제18권5호
    • /
    • pp.666-672
    • /
    • 2004
  • Granular media filtration is used almost universally as the last particle removal process in conventional water treatment plants. Therefore, superb particle removal efficiency is needed during this process to ensure a high quality of drinking water. However, every particle can not be removed during granular media filtration. Besides the pattern of particle attachment is different depending on physicochemical aspects of particles and suspension. Filtration experiments were performed in a laboratory-scale filter using spherical glass beads with a diameter of 0.55 mm as collectors. A single type of particle suspension (Min-U-Sil 5) and pH control was used to destabilize particles. The operating conditions were similar to those of standard media filtration practice: a filtration velocity of 5 m/h. More favorable particles, i.e., particles with smaller surface charge, were well attached to the collectors especially during the early stage of filtration. This selective attachment of the lower charged particles caused the zeta potential distribution (ZPD) of the effluent to move to a more negative range. On the other hand, the ZPD of the effluent did not keep moving from less negative to more negative during the later stages of filtration, and this result was thought to be caused by two reasons: ripening effects and the detachment of flocs.

입자층 에어로졸여과의 과도거동에 관한 실험연구 : 압력강하에 대한 입자 퇴적의 영향 (An Experimental Study on Transient Behavior of Granular Aerosol Filtration : Effect of Particle Deposition on Pressure Drop)

  • 정용원
    • 한국대기환경학회지
    • /
    • 제13권3호
    • /
    • pp.193-205
    • /
    • 1997
  • Experiments on granular filtration of polydispersed aerosols were conducted to determine the changes in pressure drop necessary to maintain a given gas flow rate as filter becomes clogged with deposited particles. Among the various variables which affect the increase in the pressure drop during the filtration, the most important one was found to be the size of the deposited aerosol particles. It was shown that for a given extent of the total deposition, the extent of increase in pressure drop increases with the decrease of the deposited aerosol size. For the general case where the deposited particles have different sizes, a procedure was proposed for correlating and predicting experimental results on pressure drop. This procedure was found applicable to bidispersed aerosols and polydispersed aerosols.

  • PDF

정수처리에서 암모니아성질소 제거를 위한 제올라이트 여과 (Zeolite Filtration for Ammonium Nitrogen Removal in Drinking Water Treatment)

  • 김우항;김충환
    • 한국환경과학회지
    • /
    • 제12권3호
    • /
    • pp.281-286
    • /
    • 2003
  • This study was conducted to evaluate the feasibility of ammonia removal by zeolite adsorption in drinking water treatment. In generally, drinking water treatment process is conducted coagulation/flocculation, sedimentation, sand filtration and disinfection. We tested feasibility with two method, one is powdered zeolite dosing to coagulation tank and the other is to substitute granular zeolite for sand of sand filter. In powdered zeolite test, raw water is used tap water with putting of 2 mg/l of NH$_4$$\^$+/-N. Filtration of granular zeolite was conducted with 80 cm of effective column high and 120 m/d of flow rate. At above 100 mg/1 of zeolite dosage, ammonia concentration was decreased below 0.5 mg/l of NH$_4$$\^$+/-N in powdered zeolite test. But, turbidity was increased to 30 NTU by powdered zeolite dosage. That turbidity was scarcely decreased in generally coagulant using condition in drinking water treatment. In granular zeolite test, ammonia was not detected in treated water until 8 days. This result suggest that using of granular zeolite in sand filter could be removal ammonia in winter. But we need regeneration at zeolite filtration for ammonia removal. So, it is to make clear that zeolite regeneration ability was compared KCl with NaCl. The result reveal that KCl was more excellent than NaCl. Optimum regeneration concentration of KCl was revealed 100 mM. Regeneration efficient was not increased at pH range 10∼12.5.

Detachment of nanoparticles in granular media filtration

  • Kim, Ijung;Zhu, Tongren;Jeon, Chan-Hoo;Lawler, Desmond F.
    • Membrane and Water Treatment
    • /
    • 제11권1호
    • /
    • pp.1-10
    • /
    • 2020
  • An understanding of particle-particle interactions in filtration requires studying the detachment as well as the attachment of nanoparticles. Nanoparticles captured in a granular media filter can be released by changing the physicochemical factors. In this study, the detachment of captured silver nanoparticles (AgNPs) in granular media filtration was examined under different ionic strengths, ion type, and the presence or absence of natural organic matter (NOM). Filtration velocity and ionic strength were chosen as the physical and chemical factors to cause the detachment. Increasing filtration velocity caused a negligible amount of AgNP detachment. On the other hand, lowering ionic strength showed different release amounts depending on the background ions, implying a population of loosely captured particles inside the filter bed. Overall detachment was affected by ionic strength and ion type, and to a lesser degree by NOM coating which resulted in slightly more detachment (in otherwise identical conditions) than in the absence of that coating, possibly by steric effects. The secondary energy minimum with Na ions was deeper and wider than with Ca ions, probably due to the lack of complexation with citrate and charge neutralization that would be caused by Ca ions. This result implies that the change in chemical force by reducing ionic strength of Na ions could significantly enhance the detachment compared to that caused by a change in physical force, due to a weak electrostatic deposition between nanoparticles and filter media. A modification of the 1-D filtration model to incorporate a detachment term showed good agreement with experimental data; estimating the detachment coefficients for that model suggested that the detachment rate could be similar regardless of the amount of previously captured AgNPs.

인 제거 입상소재를 적용한 여과수로 설계인자의 실험적 결정 (Experimental determination of design parameters for filtration trench using phosphorus removal granular materials)

  • 장여주;임현만;정진홍;안광호;장향연;박나리;김원재
    • 상하수도학회지
    • /
    • 제33권1호
    • /
    • pp.9-16
    • /
    • 2019
  • The algal blooms in stagnant streams and lakes have caused many problems. Excessive algae leads to disturbance of ecosystem and overload of water treatment processes. Therefore, phosphorus(P), source of algal blooms, should be controlled. In this study, a filtration trench has been developed to convert dissolved phosphorus into hydroxyapatite(HAP) so that it could be crystallized on the surface of 'phosphorus removal granular material'; and residual particulate phosphorus could be removed by additional precipitation and filtration. The front and rear parts of filtration trench consisted of 'phosphorus removal granular material contact bed' and 'limestone filtration bed', respectively. As a result of the column test using phosphorus removal granular material and limestone serially, $PO_4-P$ was removed more than 90% when EBCT(empty bed contact time) of the contact bed was over 20 minutes; and T-P represented 60% of removal efficiency when total EBCT was over 1.5 hours. The results of column tests to figure out the sedimentation characteristics showed that more than 90% of particulate phosphorus could be removed within 24 hours. It was necessary to optimize the filtration part in order to increase removal efficiency of T-P additionally. Also, it was confirmed through the simulation of Visual MINTEQ that most of particulate phosphorus in the column tests is the form of HAP. Based on the results of the study, it could be suggested that the design parameters are over 0.5 hour of EBCT for phosphorus removal granular material contact bed and over 1.5 hours of EBCT for limestone filtration bed.

입상여과에서 액반플럭의 부착 (Alum Floc Attachment in Granular Media Filtration)

  • 김진근
    • 한국물환경학회지
    • /
    • 제20권6호
    • /
    • pp.625-630
    • /
    • 2004
  • 입상여과는 표준식 정수처리 공정에서 입자물질 제거의 최종공정으로 대부분 사용되고 있다. 따라서 양질의 수돗물을 만들기 위해서는 입상여과에서 높은 수준의 입자물질 제거가 요구되고 있다. 그러나 여과공정에서 모든 입자물질을 제거할 수 없으며, 또한 입자물질의 부착특성은 입자와 용액의 물리화학적 특성에 따라 달라진다. 실험실규모의 여과칼럼과 입경 0.55mm의 유리구슬을 여재로 한 여과실험이 수행되었다. Min-U-Sil 5가 입자물질로 사용되었으며 입자물질을 불안정화하기 위하여 액반을 사용하였다. 운전조건은 표준입상여과와 동일하였으며 여과속도는 5m/h 였다. 입자와 여재가 모두 음의 표면전하를 갖을 경우 작은 표면 전하를 갖는 입자가 여과초기에 여재에 잘 부착되었다. 작은 표면전하를 갖는 입자의 선택적 부착은 유출수의 제타 전위분포를 더 음인 방향으로 이동시켰다. 한편 입자의 표면전하가 양의 값을 갖을 경우는 여과수 입자의 표면전하가 양의 큰 값에서 작은 값으로 변하였는데 이는 입자와 여재사이의 이온전이에 기인하는 것으로 생각된다.

그래뉼 타입 활성탄 필터의 100 나노 미만 다분산 초미세먼지 표면흡착 제거 효율 연구 (Filtration Efficiency of Granular Activated Carbons to Polydisperse Ultrafine Particles through the Surface Adsoprtion)

  • 조경일;강기원;신지윤;김창혁
    • 한국입자에어로졸학회지
    • /
    • 제18권3호
    • /
    • pp.79-86
    • /
    • 2022
  • Many commercial air purifiers currently have deployed granular activated carbon (GAC) filters for removing volatile organic compounds in the indoor air. GACs are generally used to remove gaseous contaminants in the air through adsorption by the inner surfaces of pores. In addition, airborne particles can be also filtered by the surface adsorption of the GACs, which can improve the life-time of the particulate filters. In this study, the filtration efficiency of GACs to ultrafine particles through surface adsorption was investigated at different volume flow rates by deploying a continuous particle filtration system. The polydisperse sodium chloride (NaCl) particles were generated by a set of an atomizer and a diffusion dryer, and then mixed with particle-free air at different volume flow rates. The penetration of ultrafine particles and pressure drop for each experimental condition were measured to figure out the effect of the volume flow rate on the surface adsoprtion of the GACs to particles, ~ 2 mm. The particle filtration efficiency of the GACs decreased as the volume flow rate increased from 4 to 14 lpm. However, the 5 times thicker GAC filter layer decreased the penetration of ultraparticles than a preious study. The filtration efficiency of the single granule was also higher than the previous result in the literature with smaller granule filter materials.

해수담수화에서 용존유기물을 제거하기 위한 전처리 공정의 평가 (Evaluation of Pretreatment Processes for Dissolved Organic Carbon Removal in a Desalination Process)

  • 김우항
    • 한국물환경학회지
    • /
    • 제20권5호
    • /
    • pp.447-451
    • /
    • 2004
  • The various pretreatment processes were evaluated to remove organic pollutants of weathered oil contaminated seawater(WOCS) for reverse osmosis desalination process, Biodegradation, coagulation, ultrafiltration, advanced oxidation processes and granular activated carbon filtration were used to evaluate the potential of organic pollutants removal in WOCS. Dissolved Organic Carbon(DOC) was almost not removed by biodegradation in WOCS. DOC was removed by 25% and 10% with the addition of $FeCl_3$ and PAC in WOCS, respectively. The removal efficiency using ultrafiltration(WOCS 500) was about 20% of DOC and 40% of $E_{260}$, respectively. In AOP application of WOCS, the removal of organic materials was improved up to 60% by the combination of $UV/O_3$ compared to UV process. However, 98% of DOC in woes could be removed by granular activated carbon filtration. It is revealed that activated carbon filtration is the best process for the pretratment of DOC removal.

A comparative study of granular activated carbon and sand as water filtration media with estimation of model parameters

  • Chatterjee, Jaideep;A, Shajahan;Pratap, Shailendra;Gupta, Santosh Kumar
    • Advances in environmental research
    • /
    • 제6권1호
    • /
    • pp.35-51
    • /
    • 2017
  • The use of Granular Activated Carbon (GAC) and naturally occurring silica (Sand) as filtration media in water and waste water treatment systems is very common. While GAC offers the additional functionality of being an "adsorptive" filter for dissolved organics it is also more expensive. In this paper we present an experimental evaluation of the performance of a bed of GAC for colloid removal and compare the same with that from an equivalent bed of Sand. The experiments are performed in an "intermittent" manner over extended time, to "simulate" performance over the life of the filter bed. The experiments were continued till a significant drop in water flow rate through the bed was observed. A novel "deposition" and "detachment" rate based transient mathematical model is developed. It is observed that the data from the experiments can be explained by the above model, for different aqueous phase electrolyte concentrations. The model "parameters", namely the "deposition" and "detachment" rates are evaluated for the 2 filter media studied. The model suggests that the significantly better performance of GAC in colloid filtration is probably due to significantly lower detachment of colloids from the same. While the "deposition" rates are higher for GAC, the "detachment" rates are significantly lower, which makes GAC more effective than sand for colloid removal by over an order of magnitude.

입상여과에서 입자물질의 탈리 (Particle Detachment in Granular Media Filtration)

  • 김진근
    • 상하수도학회지
    • /
    • 제18권5호
    • /
    • pp.673-679
    • /
    • 2004
  • Particle breakthrough can occur by either the breakoff of previously captured particles (or flocs) or the direct passage of some influent particles through the filter. Filtration experiments were performed in a laboratory-scale filter using spherical glass beads with a diameter of 0.55 mm as collectors. A single type of particle suspension (Min-U-Sil 5, nearly pure $SiO_2$) and three different destabilization methods (pH control, alum and polymer destabilization) were utilized. The operating conditions were similar to those of standard media filtration practice: a filtration velocity of 5 m/h. To assess the possibility of particle detachment during the normal filtration, a hydraulic shock load (20% increase of flow rate) was applied after 4 hours of normal filtration. The magnitude of particle detachment was proportional to the particle size for non-Brownian particles. At the same time, less favorable particles, i.e., particles with larger surface charge, were easily detached during the hydraulic shock load. Therefore, proper particle destabilization before filtration is crucial for maximum particle removal as well as minimum particle breakthrough.