• Title/Summary/Keyword: granular activated carbon (GAC)

Search Result 152, Processing Time 0.019 seconds

The study of analysis of mutagen in drinking water (음용수 중 변이원성 물질(MX)에 관한 연구)

  • Yoo, Eun-Ah;Won, Jung-In
    • Analytical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.290-300
    • /
    • 2006
  • Disinfection by-products(DBPs), such as volatile trihalomethanes and the nonvolatile organochlorine acids, created by chlorination have been extensively studied. However MX which contributes 20-50% of the mutagenic activity in drinking water began to people's attention since 1990. Its chemical name is 3-chloro-4-dichloromethyl-5-hydroxy-2(5H)-furanone. According to WHO guidelines its concentration should be controlled, but its value has not been set up. Due to analytical difficulties in measuring this compound at such a low concentrations and lack of information on toxicity to human. Because concentration (ng/L) of MX in drinking water is low traditional testing methods are ineffective. Therefore this study compared LLE and SPE and have chosen SPE to improve preconcentration. MX has been identified in chlorinated drinking water samples in several countries but not in korea Therefore this study analyzed concentration of MX in different water sources and in spring water. This study examined the causes of changing MX content. Chlorine dosage, seasons, water temperature and distance from the source was all discoverd to be relavant. MX was analyzed in various treatment to find optimum disinfection methods. The outcome was that the concentration of MX was minimized when using biological activated carbon-O3 and granular activated carbon.

Potential of Contaminant Removal Using a Full-Scale Municipal Water Treatment System with Adsorption as Post-Treatment (실 규모 물 처리 공정 및 후속 흡착 처리에 의한 오염원 제거 잠재성 평가)

  • Haeil Byeon;Geonhee Yeo;Anh-Hong Nguyen;Youngwoong Kim;Donggun Kim;Taehun Lee;Seolhwa Jeong;Younghoa Choi;Seungdae Oh
    • Land and Housing Review
    • /
    • v.15 no.1
    • /
    • pp.167-177
    • /
    • 2024
  • This study aimed to assess the efficacy of an adsorption process in removing organic matter and micropollutant residuals. After a full-scale water circulation system, the adsorption process was considered a post-treatment step. The system, treating anthropogenically impacted surface waters, comprises a hydro-cyclone, coagulation, flocculation, and dissolved air flotation unit. While the system generally maintained stable and satisfactory effluent quality standards over months, it did not meet the highest standard for organic matter (as determined by chemical oxygen demands). Adsorption experiments utilized two granular activated carbon types, GAC 830 and GCN 830, derived from coal and coconut-shell feedstocks, respectively. The assessment encompassed organic materials along with two notable micropollutants: acetaminophen (APAP) and acid orange 7 (AO7). Adsorption kinetics and isotherm experiments were conducted to determine adsorption rates and maximum adsorption amounts. The quantitative findings derived from pseudo-second-order kinetics and Langmuir isotherm models suggest the effectiveness of the adsorption process. The findings of this study propose the potential of employing the adsorption process as a post-treatment to enhance the treatment of contaminants that are not satisfactorily treated by conventional water circulation systems. This enhancement is crucial for ensuring the sustainability of urban water cycles.