• Title/Summary/Keyword: granular activated carbon

Search Result 248, Processing Time 0.026 seconds

Changes of Microbial Community Associated with Construction Method and Maintenance Practise on Soil Profile in Golf Courses (지반 조성과 관리방법에 따른 골프장 토양내 미생물 군집의 변화)

  • Moon, Kyung-Hee;Kim, Ki-Dong;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.219-228
    • /
    • 2009
  • The construction procedures and artificial turf maintenance program on golf course definitely influence on the distortion of its environment. Soil microbial communities in soil profile were affected directly by those practises on turf areas. In Jeju island, the environmental impact assessment has been required to apply the first quality class granular activated carbon(GAC), which has a high absorbent character to agricultural chemicals, on the soil profiles of golf green system to reduce the pesticide leaching to ground water. This research was carried out to analyze the changes of microbial communities and chemical properties on soil profiles where GAC had been applied at the construction stage at two golf courses in Jeju. The changes of soil microbial population and chemical properties associated with construction methods of soil profile and agrochemical management program were analyzed by monthly at the surface and sub-soil profiles during April through October, 2007. The total numbers of bacteria and fungi, soil moisture content, soil physio-chemical properties were measured on greens and fairways of the both golf courses with different GAC treatment on the green and fairway soil profiles. The results showed that GAC had positive effects on the water holding capacity, pH and EC, however, it did not improved the holding capacity of available nutrients ${NO_3}^-,{NH_4}^+$, and phosphorus by its sorption phenomenon. In microbial count test, the total numbers of bacteria and fungi showed a great variation during sampling dates. That may directly relate to the agrochemical application, however, the ratio of total bacterial number versus total fungus number showed a constant value on a sub-soil of 15~30cm depth. Thus, the construction method of GAC in soil profile, and application of fertilizer and pesticide, both impacted on the changes of microbial population. It's means that the construction method of soil profile and turf management using agro-materials might greatly affect on the turfgrass culture and the environment of golf course.

Characteristics of Degradation of Humic Acid in GAC Adsorption, Ozone Alone, and Ozone/GAC Hybrid Process (활성탄 흡착, 오존 단독, 그리고 오존/활성탄 혼합공정에서 부식산의 분해 특성)

  • Choi, Eun-Hye;Kim, Kei-Woul;Kim, Seog-Ku;Rhee, Dong-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.989-994
    • /
    • 2005
  • The treatment efficiency and the degradation characteristics of humic acid were investigated in three processes-GAC adsorption, Ozone alone and Ozone/GAC hybrid process, in which $UV_{254}$, DOC, molecular size distribution and surface change of GAC were evaluated. DOC removal rate in Ozone/GAC hybrid profess(ca. 80%) was higher than the arithmetic sum of Ozone alone(38%) and GAC adsorption(19%). This result approves that the combined Ozone/GAC hybrid process brings synergistic effects on DOC removal from the HA containing water. $UV_{254}$ decrease rate was also at the highest in Ozone/GAC hybrid process from the three processes. It may be interpreted that the granular activated carbon in Ozone/GAC hybrid process acts as not only an adsorbent but also a catalyst for ozonation, and futhermore offers an additional reaction site between adsorbed organic matter and ozone. In the study of molecular sire distribution, there was no significant change of molecular size distribution in the GAC adsorption process during the reaction time of 120 min. In Ozone alone process, the fraction of molecular size over 30 kDa was decreased a little at the beginning and left constant after 10 min. But in Ozone/GAC hybrid process, the molecules size over 30 kDa of HA was significantly decreased from 36.3% to 3.9%. And also the fraction of smaller molecular size below 0.5 kDa was increased from 4.8%(untreated HA) to 12.3%(in Ozone alone) and 40.1%(in Ozone/GAC) respectively at the reaction time of 120 min.

The Simultaneous Nitrification and Organics Oxidation of Wastewater in Airlift Biofilm Reactors (공기리프트 생물막 반응기에서의 폐수 질화 및 유기물 동시산화)

  • 서일순;허충희
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.573-578
    • /
    • 2001
  • The effects of organic supplement (acetate) and dissolved oxygen concentration on the nitrification rate of wastewater were investigated in the 27.7 L pilot-scale airlift biofilm reactor with the granular activated carbon media of 0.613 mm diameter. The ammonium oxidation rate increased stepwise up to 5 kg N/㎥$.$d at the riser air velocity of 0.063 m/s, when the air velocity and the ammonium loading rate were raised alternately. The nitrite build-up was observed during the early stage of the biofilm formation, which disappeared after the reactor operation of 128 days. As increasing the organic loading rate, the organic oxidation rate increased up to 25.0 kg COD/㎥$.$d with the removal efficiency of 94% but the oxidation rates of ammonium and nitrite decreased. The oxidation rates of ammonium and nitrite increased with the dissolved oxygen concentrations. When the pure oxygen was sparged, the ammonium oxidation rate was almost five times higher than that with air at the same velocity.

  • PDF

Sorption of ο-Cresol by Granular Activated Carbon (GAC) and Abiotic Transformation on GAC Surface (입상활성탄에 의한 오르토크레졸(ο-cresol)의 흡착과 비생물학적 변형)

  • 한인섭;김용환
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.87-94
    • /
    • 2004
  • The effects of pretreatment of GAC and dissolved oxygen (DO) on the sorption capacity for ο-cresol were investigated using pretreated GAC under oxic and anoxic conditions. Virgin GAC was used with pretreated GACs by $O_2$, acid and base as sorbents. Sorption capacity of GAC was dependent on the oxygen conditions according to the pretreatment methods. Virgin GAC showed increased sorption capacity when DO was present in the solution, while $O_2$-pretreated GAC did not show any considerable capacity change. Acid- and base-pretreated GACs were relatively more influenced by presence of DO as compared with virgin GAC. Both acid and base-pretreated GACs showed a rapid sorption rate at the initial stage, but as contact time became longer the sorption was slower. Sorbed ο-cresol was extracted with micro-Soxhlet extraction apparatus using the GAC separated from the rate experiments. Within 1 hour both acid and base-pretreated GACs showed the decrease in extraction efficiencies under both oxic and anoxic conditions. After 1 hour such a trend (the increase as contact time was longer) was not observed and showed relatively constant efficiencies of 35∼50%. According to the results of this study $O_2$contacted with GAC before sorption as well as DO present in the solution during sorption could influence the GAC sorption capacity.

Biofilter Model for Robust Biofilter Design: 1. Adsorption Behavior of the Media of Biofilter (강인한 바이오필터설계를 위한 바이오필터모델: 1. 바이오필터 담체의 흡착거동)

  • Lee, Eun Ju;Seo, Kyo Seong;Jeon, Wui-Sook;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.149-154
    • /
    • 2012
  • The adsorption and desorption behavior of biofilter-medium was investigated on the performance of an adsorption column. Continuous flow-isothermal adsorption experiments were performed to treat waste air containing such a VOC as ethanol under the same condition of > 90% relative humidity as the condition of the feed to a biofilter process. In case of feeding waste air containing ethanol of 1,000 ppmv (or 2,050 mg ethanol/$m^3$) to the adsorption system at the rate of 2 L/min, the onsets of its breakthrough and reaching the state of dynamic equilibrium at the exit had been delayed 10 and 3 times, respectively, later than those at the 1st stage sampling port. Moreover, in case of 2,000 ppmv (or 4,100 mg ethanol/$m^3$), they had been delayed 9 and 3 times, respectively. Thus, regardless of feeding concentration, the ratios of delaying period were observed to be quite consistent each other at the exit of the adsorption column. With regard to the period of desorption, the ratios of delaying period were consistent each other to be 1.5 for both cases. In addition, the effect of microbial activity and sterilization-process was studied on adsorption equilibrium. The ethanol concentration in the vapor phase of vials packed with sterilized granular activated carbon (GAC) was quite consistent to that with unsterilized GAC. However, the ethanol concentrations in the vapor phase of vials packed with unsterilized compost and the unsterilized mixture of GAC and compost were higher than those with sterilized compost and the sterilized mixture of GAC and compost, respectively.

A Study of the Regeneration of Spent GAC using an Electrochemical Method (전기화학적 방법을 이용한 Spent Granular Activated Carbon (GAC)의 재생 연구)

  • Lee, Sangmin;Joo, Soobin;Jo, Youngsoo;Oh, Yeji;Kim, Hyungjun;Shim, Intae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.481-491
    • /
    • 2022
  • This study investigates the characteristics of the GAC adsorption behavior during the operation of a multi-stage cross-flow filtration and GAC adsorption process for the purpose of devising an advanced treatment of combined sewer overflows (CSOs) and evaluates the regeneration efficiency of spent GAC that has reached the design breakpoint. During the filtration process, suspended substances are easily removed, but dissolved organic substances are not removed, necessitating a process capable of removing dissolved organic substances for the advanced treatment of CSOs. In general, GAC adsorption has been applied under low-concentration organic conditions, such as for water purification and tertiary treatments of sewage, and has rarely been applied under conditions with high organic concentrations, such as with sewage or CSOs. Accordingly, this study will provide a new and interesting experience. Also in this study, the continuous operation and breakthrough characteristics of GAC according to the strength of the inflow organic matter were investigated, electrochemical regeneration was applied to the used GAC, and the regeneration efficiency was evaluated through desorption and re-adsorption tests. The results showed that the breakthrough period was 21 days under high concentration conditions, 28 days at medium concentrations, and 32 days under low concentration conditions. The desorption of adsorbed organic matter through electrolysis occurred in the range of 188 to 609 mgCOD/L depending on the electrolysis conditions, and the effect of the electrolyte type led to the finding that NaOH was slightly higher than H2O2.

Potential of Contaminant Removal Using a Full-Scale Municipal Water Treatment System with Adsorption as Post-Treatment (실 규모 물 처리 공정 및 후속 흡착 처리에 의한 오염원 제거 잠재성 평가)

  • Haeil Byeon;Geonhee Yeo;Anh-Hong Nguyen;Youngwoong Kim;Donggun Kim;Taehun Lee;Seolhwa Jeong;Younghoa Choi;Seungdae Oh
    • Land and Housing Review
    • /
    • v.15 no.1
    • /
    • pp.167-177
    • /
    • 2024
  • This study aimed to assess the efficacy of an adsorption process in removing organic matter and micropollutant residuals. After a full-scale water circulation system, the adsorption process was considered a post-treatment step. The system, treating anthropogenically impacted surface waters, comprises a hydro-cyclone, coagulation, flocculation, and dissolved air flotation unit. While the system generally maintained stable and satisfactory effluent quality standards over months, it did not meet the highest standard for organic matter (as determined by chemical oxygen demands). Adsorption experiments utilized two granular activated carbon types, GAC 830 and GCN 830, derived from coal and coconut-shell feedstocks, respectively. The assessment encompassed organic materials along with two notable micropollutants: acetaminophen (APAP) and acid orange 7 (AO7). Adsorption kinetics and isotherm experiments were conducted to determine adsorption rates and maximum adsorption amounts. The quantitative findings derived from pseudo-second-order kinetics and Langmuir isotherm models suggest the effectiveness of the adsorption process. The findings of this study propose the potential of employing the adsorption process as a post-treatment to enhance the treatment of contaminants that are not satisfactorily treated by conventional water circulation systems. This enhancement is crucial for ensuring the sustainability of urban water cycles.

Effects of the Recirculation Port Location on Treatment Efficiency of an Anaerobic Hybrid Reactor Consisted of a Fluidized Bed and a Packed Bed (유동상과 충전상이 결합된 혐기성 혼성 반응조에서 순환수의 인출지점이 처리효율에 미치는 영향)

  • Kim, Seong-Yong;Park, Soo-Young;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.1935-1944
    • /
    • 2000
  • This research was performed to investigate the effects of the location of recirculation port on the wastewater treatment efficiency of an anaerobic hybrid reactor consisted of a fluidized bed and a packed bed. The recirculation port was located either at the top of the packed bed (Reactor 2) or above the fluidized bed (Reactor 1). Media for the fluidized bed and the packed bed were granular activated carbon and Pall ring-type plastic media. respectively. At organic loading rates(OLR) up to $6.2kg\;COD/m^3-day$. Reactor 2 showed somewhat better performance than Reactor 1 with COD removal efficiencies of 85.0-95.2%. The COD removal efficiencies of the reactors drastically deteriorated at OLRs above $6.2kg\;COD/m^3-day$, and the tendency was more severe for Reactor 1 than for Reactor 2. Eventhough the two reactors showed similar effluent SS concentrations at OLRs below $3.6kg\;COD/m^3-day$, Reactor 2 showed higher effluent SS concentrations than Reactor 1 at OLRs above $5.3kg\;COD/m^3-day$. Reactor 2 was stabler than Reactor 1 with a methane production rate of $5.5kg\;COD/m^3$-day at the OLR of $13.3kg\;COD/m^3-day$. An abrupt increase in effluent volatile acid concentration was observed at the OLR of $6.2kg\;COD/m^3-day$ for Reactor 1 and $7.1kg\;COD/m^3-day$ for Reactor 2. and the increase was greater in Reactor 1. In conclusion. the range of OLR for adequate treatment in the hybrid reactor was determined according to the location of the internal recirculation port. It is more desirable for higher OLRs to locate the recirculation port at the top of the packed bed in order to utilize the whole volume of the reactor.

  • PDF