• Title/Summary/Keyword: granodiorite

Search Result 164, Processing Time 0.034 seconds

Uranium in Drinking Water of Kyungpook Area in Korea (경북지역의 먹는 물에서 우라늄 검출 특성)

  • Lee, Hea-Geun;Cha, Sang-Deok;Kim, JeongJin;Kim, Young-Hun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.235-242
    • /
    • 2014
  • Uranium can be released into the water environment from natural sources and human activities. The natural source of uranium is dominant in the Korean soil and groundwater environments. Uranium has both of radioactive and chemical toxic properties. Therefore, a drinking water contaminated with uranium has a high health risk. This study was conducted to determine the uranium concentration of water systems including small village drinking water system, groundwater for drinking water purpose, spring water, groundwater monitoring well, and emergency water suppling system. The uranium concentration was compared with domestic and other countries' standard. The contamination level was also evaluated on the basis of geological characteristics of the area. Among total 803 samples, 6 exceeded the Korean standard, $30{\mu}g/{\ell}$ and this was about 0.7% of the total sample. On the basis of geology, uranium concentration appeared to be increased in order of biotite granodiorite > biotite granite > gneissoid granite. The highest level of uranium was 12.4 in average.

Rb-Sr Isotopic Composition of Mesozoic Sancheong Syenite and Its Geologic Implication (중생대 산청섬장암의 Rb-Sr 조성과 의미)

  • Park Kye-Hun;Kim Dong-Yeon;Song Yong-Sun;Cheong Chang-Sik
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.1 s.43
    • /
    • pp.1-9
    • /
    • 2006
  • Sr isotopic compositions are determined from the syenite of Sancheong area, yielding age of $211{\pm}23(2\sigma)$ Ma and $^{87}Sr/^{86}Sr$ initial ratio of $0.70598{\pm}0.00060$. Such result confirms that Sancheong syenite was emplaced during the Mesozoic around the Triassic-Jurassic boundary. Rather low initial $^{87}Sr/^{86}Sr$ ratio suggests insignificant influence of old crustal materials. There are strong contrast in rock types of plutonic associations between Sancheong-Macheon area and adjacent Hamyang-Geochang area to the north, i.e. syenite-diorite-gabbro and granite-granodiorite respectively. $^{87}Sr/^{86}Sr$ initial ratios also show distinction between these areas. Such differences suggest regional contrast in tectonic environments between them.

Petrology and petrochemistry of the so called "Ganghwa syenitic rock" in southeastern part of Ganghwa Island (강화도(江華島) 동남부(東南部)에 분포(分布)하는 소위(所謂) 강화섬장암질암(江華閃長岩質岩)에 대(對)하여)

  • Kim, Yong-Jun;OH, Mihn-Soo
    • Economic and Environmental Geology
    • /
    • v.11 no.2
    • /
    • pp.47-57
    • /
    • 1978
  • The study focused on the petrology and petrochemistry of the so called "Ganghwa syenitic rocks" which intruded into metasediment of basement in southeastern part of Ganghwa Island. The geologic sequence of the mapped area was shown in table 1, 10 model analyses and 7 chemical analyses on the rock samples taken from the Ganghwa syenitic rocks and Manisan granite have been used to discuss the nomenclature of the rocks and petrological relationship between rock types. The petrograpical and petrochemical features based on, the analyses are as follows: 1) Ganghwa syenitic rocks consist of Ganghwa alkali syenite and Ganghwa diorite porphyry which based on the classification of the subcommision on systematics of igneous of IGUS. Ganghwa diorite porphyry which occured as dike forms are intruded into Ganghwa alkali syenite. The rock forming minerals of Ganghwa alkali syenite are composed of perthite, plagioclase, quartz, hornblend and chlorite in major, and zircon, apatite, sericite and magnetite in minor. Ganghwa diorite porphyries consist of plagioclase, biotite, hornblend, orthoclase and chlorite, with, porphyritic texture. 2) In silica-oxides variation (Fig. 2) and AMF diagram (Fig_ 3), the Ganghwa alkali syenite is similar to the trend of Daly's average basalt-andesite-dacite-rhyolite than Skaergaard which shows the trend of the fractional crystallization of magma, and equivalent to the alkali rock series by Peacock. 3) The general trend of data points shift to plagioclase, and are superimposed on the alkali rich terminal part of the granodiorite province of SW Finland in normative Q-Kf-Pl(Fig. 4) and Or-Ab-An diagram respectively. The above-mentioned evidences suggested that the Ganghwa syenitic rocks are the differential products resulted by assimilation of intermediated magma and metasedment rock under relatively rapid cooling condition.

  • PDF

Metamorphism of the Meta-Sedimentary Rocks in the Osu-Jinan Area, Cheonrapuk-Do, Korea (전라북도 오수-진안 지역에 분포하는 변성퇴적암류에 대한 변성작용)

  • Ahn, Kun Sang;Kim, Yong Jun;Shin, In Hyun
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.163-174
    • /
    • 1997
  • Precambrian metapelites and metapsammites of the Jinan-Osu area (so-called Seologri and Yongamsan Formation) consist of black slate, phyllite, mica schist, quartzite and rarely calc schist. They are intruded by Sunkagsan granite gneiss, Foliated granodiorite, Amphibolite, Sunchang foliated granite and Namwon granite. Mylonite texture, crenulation cleavage and minor shear zone are common. The meta-sedimentary rocks include various rock-fragments xenoliths in size (up to 3 cm) and rock-type. They have various porphyroblastic spots in size (up to 1 cm) and their mineral composition is different. The xenoliths are schists, granite and quartzite, which are rectangular or lens form and recrystallized muscovite, chlorite and quartz. Spots are andalusite and biotite aggregates extensively replaced by chlorite. The metamorphic terrain is divided into three zones of progressive metamorphism on the basis of mineral assemblage. They are chlorite zone, chloite-biotite zone and andalusite-biotite zone ascending order, from west to east approximately. Isograd reactions are phengitic muscovite + chlorite = less phengitic muscovite + biotite + quartz + $H_2O$ and muscovite + chlorite + quartz = andalusite + biotite + $H_2O$ between the chlorite zone and chlorite-biotite zone, and between the chloritebiotite zone and andalusite-biotite zone, respectively. Sample B6 (exposed near the Obong-ri) includes staurolites and greenish biotites, that is different in mineral assemblage and chemical composition from the meta-sedimentary rocks. Sample A12 (exposed near the Shinam-ri) has greenish white spots (up to 1 cm in diameter) mainly composed of Kfeldspar, quartz and sillimanite replaced by muscovite.

  • PDF

Subsurface Structure of the Yeongdong Basin by Analyzing Aeromagnetic and Gravity Data

  • Kim, Kyung-Jin;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.87-96
    • /
    • 2002
  • Aeromagnetic and gravity data were analyzed to delineate the subsurface structure of the Yeongdong basin and its related fault movement in the Okcheon fold belt. The aeromagnetic data of the total intensity (KIGAM, 1983) were reduced to the pole and three dimensional inverse modeling, which considers topography of the survey area in the modeling process, were carried out. The apparent susceptibility map obtained by three dimensional magnetic inversion, as well as the observed aeromagnetic anomaly itself, show clearly the gross structural trend of the Yeongdong basin in the direction on between $N30^{\circ}E$ and $N45^{\circ}E$. Gravity survey was carried out along the profile, of which the length is about 18.2 km across the basin. Maximum relative Bouguer anomaly is about 7 mgals. Both forward and inverse modeling were also carried out for gravity analysis. The magnetic and gravity results show that the Yeongdong basin is developed by the force which had created the NE-SW trending the magnetic anomalies. The susceptibility contrast around Yeongdong fault is apparent, and the southeastern boundary of the basin is clearly defined. The basement depth of the basin appears to be about 1.1 km beneath the sea level, and the width of the basin is estimated to be 7 km based on the simultaneous analysis of gravity and magnetic profiles. There exists an unconformity between the sedimentary rocks and the gneiss at the southeastern boundary, which is the Yeongdong fault, and granodiorite is intruded at the northwestern boundary of the basin. Our results of gravity and magnetic data analysis support that the Yeongdong basin is a pull-apart basin formed by the left-stepping sinistral strike-slip fault, which formed the Okcheon fold belt.

Occurrence of Placer Gold Deposits from the Takaoi Area of the Middle Kalimantan, Indonesia (인도네시아 중부 칼리만탄 따까오이 지역 사금광상의 산출상태)

  • Kim In-Joon;Lee Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.191-212
    • /
    • 2006
  • Placer gold deposits is mainly distributed in the Takaoi area. The alluvium is unconsolidated or semiconsolidated deposit consisting of gravel, sand, and soil beds in ascending order. They unconformably overlies the Carboniferous-Permian schist and Cretaceous granodiorite substratum. Based on detailed facies analysis, the alluvium can be interpreted as a typical fluvial deposits containing gravel and sand beds of channel-fill unit and soil deposit of floodplain. Gold grains are included mainly in the gravel bed and vein quartz is only contained gold among all kinds of gravels. These features indicates that the source rock of the gold grain is vein quartz and gold grains are separated from vein quartz during transport and abrasion. The reserves of gold in this area reach to at least 792 kg.

The Study of Structural Control and Relative Photogeological Interpretation on Shiheung Mine Region (시흥군(始興郡) 서면일대(西面一帶)의 광화구제구조(鑛化規制構造)와 항공사진해석결과(航空寫眞解析結果)와의 비교연구(比較硏究))

  • Chi, Jeong Mahn;Ryuu, Byeoonghwa
    • Economic and Environmental Geology
    • /
    • v.3 no.4
    • /
    • pp.199-222
    • /
    • 1970
  • One of the biggest sulfide metallic (Cu, Pb, Zn) ore deposits of South Korea is located in the area of Seo-myeon, Shiheung-gun, Gyeonggi-do. Geology of the region is mostly composed of metasediments of biotite schist, graphite schist, injection gneiss, sericite schist, limesilicate and quartzite from bottom, those are applicable to so-called Yeoncheon System of Pre-Cambrian, and granodiorite, quartz porphyry, basic dykes are outcroped in a small scope as intrusives. The origin of the ore deposit is pyrometasomatic contact deposits due to hydrothermal replacement and the ore bodies are imbedded in lower bed of limesilicate formation as impregnation and ore minerals are galena, sphalerite, marmatite, chalcopyrite, bornite, chalcocite, covellite, and the later two minerals are both hypogene and supergene. Gangue minerals are mostly skarn minerals those hornblende, diopside, epidote, hedenbergite, chlorite, garnet and quartz except primary calcite and quartz. Boundary plane (NS strike) between schists and limesilicate seemed to be primary opening of ore solution and fractures bearing $N50^{\circ}{\sim}80^{\circ}W$ are secondary structural control for localization of ore minerals and the third structural controls are both irregular gashes and schistosity in small scale. Photogeological study was carried with vertical aerial photo scaled 1: 38,000 and enlarged 1 : 10,000 under stereoscope. The study on the area convinced the fact that the geologic boundaries between rocks, limesilicates and quartzites, are traced easily by their typical topographic feature and drainage, and the main fracture patterns which derived from the result of fracture traces, that photogeologic lineament observed under stereoscope, are those bearing (1) $N20^{\circ}W$, (2) $N58^{\circ}W$, (3) $N76^{\circ}W$, (4) EW, (5) $N20^{\circ}W$, (6) $N62^{\circ}W$, (7) $N77^{\circ}W$. Among the written fractures, (5) (not schistosity, in case of fault) (6) (7) are post-mineral faults and others are pre-mineral faults and others are pre-mineral structures, and (2) (3) (6) (7) are coincided with statistical figure of 208 fractures surveyed in underground. By the result of the study, mineralized zone, are presumed to extend north and southward, total length about 4km.

  • PDF

Conservation Treatment, Deterioration Assessment and Petrography of the Hongjimun Ogansumun (Five-arched Floodgates) in Seoul (서울 홍지문 오간수문의 암석기재적 분석과 손상도 평가 및 보존처리)

  • Lee, Myeong Seong;Kim, Jiyoung;Lee, Chan Hee;Kim, Yeong Taek;Han, Byoung Il
    • Journal of Conservation Science
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2013
  • The Hongjimun Ogansumun (Five-arched floodgates) is composed mainly of biotite granite, pink feldspar granite and granodiorite that are very similar with granitic rocks around the Seoul. Main damage in the floodgates was gray, yellow and predominantly white discoloration on the surface of stone blocks. All floodgates showed more discoloration in the wall than ceiling, and there were growing stalactite on the ceiling. Scientific analyses determined that the white discoloring substrates were mainly calcite. Therefore, conservation treatment was carried out to remove the substrates by using dry cleaning, high pressure cleaning and chemicals. The floodgates have been restored to good state, but it is still significantly necessary to install drainage on the top of the gates.

Petrologic Study on the Basement and the Lower Part of Ogcheon Zone and Igneous Intrusives in the Pyeongchang-Jecheon Area (옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資源)에 관(關)한 연구(硏究) -평창(平昌)~제천간(堤川間)에 분포(分布)하는 옥천대하부(沃川帶下部)와 기반(基盤)의 암상(岩相) 및 화성(火成) 관입체(貫入體)의 암질(岩質)에 대(對)한 연구(硏究)-)

  • Lee, Dai Sung;Na, Ki Chang;Kim, Yong Joon
    • Economic and Environmental Geology
    • /
    • v.18 no.4
    • /
    • pp.381-397
    • /
    • 1985
  • A petrological study has been done in the pyeongchang-Jaecheon area which is a northwestern part of the basement of Ogcheon zone for the purpose of comparison of the area to the Nogjeon-Yeongchun area which is the antipodal basement of the zone in the petrological and geotectonical view points. The major units of the area are Precambrian granitic gneissic complex, banded gneiss, linea ted leucocratic gneiss and pegmatitic leucogranitic gneiss in the west, elongated exposure of quartz schist (or partly quartzite) and phyllite, named as Jungdaegal-bong Group correlated to the lower sequence of Joseon Group, in the middle, and limestone and calcic dolomite, Iptanri Formation, correlated to the middle of Joseon Group in the east. Igneous plutons are distributed in the areas of gneissic complex and limestone formation as well as in the Eosangcheon and Daedaeri areas in the southeastern out of the area. Present study reveals that the gneissic complex are the products of granitization to metamorphism of amphibolite facies in the order of above mentioned from the metasediments of schists and calcareous rocks. A notable characteristics of the phyllite of Jungdaegal-bong Group is the presence of syntectonically segregated quartz rods in the forms of lens, swirl or boudinage in evenly distributed in the phyllitic to chloritic matrix. Igneous rocks range in composition from gabbro through diorite, granodiorite, to schistosed and porphyritic granites in stock and dike. The orogenic movement of the Ogcheon zone initiated in the middle Proterozoic time, pre-sedimentation of Ogcheon Group and superposed the granitization in Permian, Jurassic Daebo orogeny with granitic batholiths and stocks, and Cretaceous plutonic intrusion.

  • PDF

Igneous Activity in Ogcheon Geosynclinal Zone, Korea -with Special Reference to the Igneous Activity in its Northeastern Part- (옥천대(沃川帶)에서의 화성활동(火成活動) -특(特)히 옥천대동북부(沃川帶東北部)에서의 화성활동(火成活動)-)

  • Lee, Dai Sung;Kim, Yong Jun
    • Economic and Environmental Geology
    • /
    • v.18 no.1
    • /
    • pp.23-39
    • /
    • 1985
  • The northeastern part of Ogcheon zone which consisted mainly of Cambro-Ordovician arenaceous, argillaceous and calcareous formations and Carboni-Triassic arenaceous and argillaceous formations is delineated as the eastern mass of a thrust fault along Choongju-Moongyong-Cheongsan in the middle of the zone. The present study proposes a geotectonic line, Imgye-Samchog fault(see, figure 1) which divides the northeastern part into two blocks, Hambacksan block in the west and East coast block in the east. The igneous rocks in the Hambacksan block ranging from granite to gabbro are distributed in a symmetrical zones parallel to general direction of Ogcheon zone as follows (Fig. 2 and Table 2). Southeast igneous rock zone: it aligns Jurassic granites in its south and Precambrian leucocratic granites in its north. Central igneous rock zone: it aligns Cretaceous granites in its south and Jurassic granites, and some of diorite and gabbro in its north. Northwest igneous rock zone: aligns Jurassic granites in its south and huge batholithic granodiorite in its north. The distribution of the igneous rocks in the East coast block shows an entirely different features from those of Hanbacksan block. In the southern part of the block they assemble in a narrow area ranging in age from Early Proterozoic, through Middle to Late Proterozoic, Devonian, Jurassic, Cretaceous to Tertiary, whereas, the igneous rocks in the northern part of the block gathered to a restricted area, in ages of Middle Proterozoic and Cretaceous. The assemblage of the igneous rocks in the studied area shows a compositionally restricted, mixed S-type and I-type granites, $^{87}Sr/^{86}Sr$ > 0.706, rare volcanics and shortening with upright folding. These lithologic and structural features suggest that the igneous activity in this part related intimately to Hercynotype Orogeny of Pitcher(1979). Chronological episodes of igneous activity from Early Proterozoic to Early Tertiary in the northeastern part are figured.

  • PDF