• 제목/요약/키워드: granitoids

검색결과 101건 처리시간 0.021초

태백산(太白山) 광화대(鑛化帶) 중부지역(中部地域) 페그마타이트에 대한 지화학적(地化學的) 연구(硏究) (Geochemical Study on Pegmatites in Central Region of Taebaek Mineralized Area)

  • 최성훈;지정만
    • 자원환경지질
    • /
    • 제23권1호
    • /
    • pp.35-57
    • /
    • 1990
  • This study has been carried out on the Pegmatites, Naedeogri Granites, Nonggeori Granites and Metasedimentary rocks in the middle area of Taebaeksan region to investigate the geochemical properties and possibility of productivity. Pegmatites are characterized by metamorphosed anatectic pegmatite and differentiated magmatic pegmatite, and are mixed type of rare-element pegmatite and mica-bearing pegmatite by the classification of Ginsburg(1979). The petrological type of the igneous rocks is thought to be calcalkali, subalkaline and peralumious. According to chemical variations against D. I., differentiation trends from Naedeogri and Nonggeori Granites through non-mineralized pegmatites to mineralized pegmatites are supposed. From the relationship between oxided and $SiO_2$, pegmatites and Nonggeori Granite have shown similar tendencies and bulk composition of pegmatites and similar to metasedimentary rocks near the intrusives. By judging the correlations of trace elements, it is elucidated that pegmatites adjacent to Naedeogri and Nonggeori Granites have been originated in magma differentiation from these granites and the others have been differentiated by remelting or partial melting from metasedimentary rocks. $Sp_5$, $Sp_8$, and $Sp_9$ pegmatites are considered as productive rocks, and $Sp_4$, $Sp_6$, $Sp_7$, $Sp_{10}$, $Sp_{11}$, and $Sp_{12}$ pegmatites and granites are supposed to have a weak productivity, in terms of element ratios related with Sn mineralizations. Tourmalines in productive pegmatites are formed under the circumstance of Li-poor granitoids and associated with pegmatites, and the others are seemed to be originated in metapelites and metapsammites which are not coexisting with an Al-saturating phase. Three types of chemical zoning are noticed in tourmalines: (1) apparently homogeneous compositional patterns, (2) a continuous core-to-rim zoning and, (3) a discontinuous core-to-rim zoning. From results of EPMA of tourmalines, Al, Mg and Ca increase closer to rim, while Fe decreases.

  • PDF

상동광산 금스카른광상의 지구화학적 연구 (A Geochemical Study of Gold Skarn Deposits at the Sangdong Mine, Korea)

  • 이부경;전용원
    • 자원환경지질
    • /
    • 제31권4호
    • /
    • pp.277-290
    • /
    • 1998
  • The purpose of this research is to investigate the dispersion pattern of gold during skarnization and genesis of gold mineralization in the Sangdong skarn deposits. The Sangdong scheelite orebodies are embedded in the Cambrian Pungchon Limestone and limestone interbedded in the Myobong Slate of the Cambrian age. The tungsten deposits are classified as the Hangingwall Orebody, the Main Orebody and the Footwall Orebody as their stratigraphic locations. Recently, the Sangdong granite of the Cretaceous age (85 Ma) were found by underground exploratory drillings below the orebodies. In geochemisty, the W, Mo, Bi and F concentrations in the granite are significantly higher than those in the Cretaceous granitoids in southern Korea. Highest gold contents are associated with quartz-hornblende skarn in the Main Orebody and pyroxene-hornblende skarn in the Hangingwall Orebody. Also Au contents are closely related to Bi contents. This could be inferred that Au skarns formed from solutions under reduced environment at a temperature of $270^{\circ}C$. According to the multiple regression analysis, the variation of Au contents in the Main Orebody can be explained (87.5%) by Ag, As, Bi, Sb, Pb, Cu. Judging from the mineralogical, chemical and isotope studies, the genetic model of the deposits can be suggested as follows. The primitive Sangdong magma was enriched in W, Mo, Au, Bi and volatiles (metal-carriers such as $H_2O$, $CO_2$ and F). During the upward movement of hydrothermal ore solution, the temperature was decreased, and W deposits were formed at limestone (in the Myobong Slate and Pungchon Limestone). In addition, meteoric water influx gave rise to the retrogressive alterations and maximum solubility of gold, and consequently higher grade of Au mineralization was deposited.

  • PDF

금산지역에 분포하는 화강암류의 암석지구화학 (Petrogeochemistry of Granitic Rocks Distributed in the Geumsan District, Korea)

  • 진호일;민경원;전효택;박영석
    • 자원환경지질
    • /
    • 제28권2호
    • /
    • pp.123-137
    • /
    • 1995
  • The Mesozoic Geumsan granitic rocks of various composition are distributed in the Geumsan district, the central part of the Ogcheon Fold Belt. About 40 ore deposits of $CaF_2{\pm}Au{\pm}Ag{\pm}Cu{\pm}Pb{\pm}Zn$ are widely distributed in this district and are believed to be genetically related to the granitic rocks. Based on their petrography and geochemistry, the granitic rocks in this district can be classified into two groups ; the Group I( equigranular leucocratic granite, porphyritic biotite granite, porphyritic pink-feldspar granite, seriate leucocratic granite) and the Group II(seriate pinkfeldspar granite, equigranular alkali-feldspar granite, equigranular pink-feldspar granite, miarolitic pink-feldspar granite, equigranular biotite granite). Interpreted from their isotopic dating data and geochemical characteristics, the Group I and the Group II are inferred to be emplaced during the Jurassic(~184Ma), and the Cretaceous to the early Tertiary period(~59Ma), respectively. Both Group I and Group II generally belong to magnetite-series granitoids. The Cretaceous granitic rocks of Group II are more highly evolved than those of the Jurassic Group I. The Rb-Sr variation diagram suggests that the granitic rocks of the Jurassic Group I and of the Cretaceous Group II be evolved mainly during the processes of fractional crystallization and partial melting, respectively.

  • PDF

중국의 중석광상을 근거로한 중석광상 성인 총론 (General Remarks of Geneses of Tungsten Ore Deposits Based on Tungsten Deposits of China)

  • 문건주
    • 자원환경지질
    • /
    • 제28권3호
    • /
    • pp.287-303
    • /
    • 1995
  • Tungsten ore deposits in China show clearly their relationship between granitoids and orebodies. All kinds of different tungsten ore deposits, having the largest ore reserves in the world, occur in China. Major tungsten deposits in 1950'years were locally confined in three provinces such as Jiangxi, Hunan and Guangdong. However, the major tungsten ore deposits are replaced by new tungsten deposits such as Sandahozhuang, Xingluokeng, Shizhuan and Daminghsan deposit which may be larger than the previous major deposits. Tungsten ore deposits of China exhibit obviously the granitoid was the ore-bringer to form tungsten ore deposits. The wolframite-bearing quarz veins in China indicate that tungsten mineralization took place by crystallization of wolframite preferentially unless $Ca^{{+}{+}}$ was introduced from outside into the magma-origin-fluid, since it is understood that the scheelite in the Sangdong ore deposit was preferentially precipitated, because of chemical affinity, from the tungsten fluid in which Fe and Ca ions were as sufficient as to form magnetite, wolframite and scheelite. Tungsten deposits in the world are divided into two systems; W-Mo-Sn system and W-Mo system. Most of tungsten deposits in China dated to about 196-116 Ma belong to the W-Mo-Sn system, while late Cretaceous tungsten deposits such as the Sangdong deposit in Korea belongs to the W-Mo system. The genetic order of tin-tungsten-molybdenum mineralization observed in the Moping tungsten mine in China and the Sangdong in Korea may be attributed to volatile pressures in the same magma chamber. It is assumed from ages of tungsten mineralizations that ore elements such as tin, tungsten and molybdenum might be generated periodically by nuclear fission and fusion in a part of the mantle and the element generated was introduced into the magma chamber. The periodical generation of elements had determined association, depletion and enrichment of tin and molybdenum in tungsten mineralization and it results in little association of cassiterite in tungsten deposit of late Cretaceous ages. Different mechanism of emplacement of the ore-bearing magma has brought various genetic types of tungsten deposits as shown in China and the world.

  • PDF

탄산염암 층준교대형 백전광상의 천열수 금-은 광화작용과 생성환경 (Epithermal Gold-Silver Mineralization and Depositional Environment of Carbonate-hosted Replacement Type Baegjeon Deposits, Korea)

  • 이찬희;박희인
    • 자원환경지질
    • /
    • 제29권2호
    • /
    • pp.105-117
    • /
    • 1996
  • The Baegjeon Au-Ag and Sb deposits, small of disseminated-type gold deposits are formed as a result of epithermal processes associated a shallow-seated Cretaceous Yeogdun granitoids intrusion. The orebodies are formed by the replacement of carbonate minerals in thin-bedded oolitic limestone beds favorable for mineralization within the upper-most Cambrian Pungchon Limestone Formation. The mineralization can be recognized one stage, ore minerals composed of base metal sulfides, electrum, AgSb-S, Ag-Cu-S, and Sb-S minerals. Gold-bearing minerals consist of electrum and submicroscopic invisible gold in pyrite and arsenopyrite. The composition of electrums ranges from 33.58 to 63.48 atomic % Ag. Fluid inclusion studies reveal that ore fluids were low saline $NaCl-CO_2-H_2O$ system. Temporary fluid mixing and boiling occured in later stage. Fluid inclusion data indicates the homogenization temperatures and salinities of NaCl eqivalent wt% were 176 to $246^{\circ}C$ and from 0.0 to 4.8 wt%, respectively. And $-logfs_2$, of mineralization obtained by thermodynamic considerations as 12.4 to 13.8 atm. The ${\delta}^{34}S_{H_2S}$, values of hydrothermal sulfides were calculated to be 6.8 to 10.2‰ which was of sedimentary origin. The ${\delta}^{18}O_{H_2O}$ and ${\delta}^{13}C_{CO_2}$, range from -3.9 to 9.6‰, from -1.1 to -2.2‰, and ${\delta}D$ range from -89 to -118‰, respectively. The Au deposition during mineralization seems to have occurred as a result of decrease of temperature, $fs_2$, $fo_2$, and pH probably due to oxidation by meteoric water mixing, which destabilized original $Au(HS)^-{_2}$. The mineralization of the Baegjeon deposits is similar to the Carlin-type deposits characterized by sediments-hosted epithermal bedding replacement disseminated gold deposits.

  • PDF

전북 광상의 납 동위원소 조성에 대한 고찰 (Pb Isotopic Composition of the Ore Deposits Distributed in Jeonbuk Province)

  • 정재일;박계헌
    • 암석학회지
    • /
    • 제15권2호
    • /
    • pp.81-89
    • /
    • 2006
  • 전라북도 지방에 분포하는 번암, 동진, 적상 및 북창 광산에서 채취한 납광석광물에 대한 납 동위원소 분석을 실시하였다. 그 결과 광상별로 상당히 다른 납 동위원소 조성을 가짐을 확인하였다. 번암광산, 북창광산 및 동진광산의 납 동위원소값이 형성하는 선형변화는 그 기울기가 매우 급하기 때문에 연대로 해석하기는 곤란하며 이 광상들의 납은 주로 선캠브리아 기저지각과 중생대 화강암질암의 두 종류 단성분들로부터 유래하였을 가능성을 제기하였다. 광상의 형성시 이러한 근원물질들로부터 유래한 납의 혼합비율은 광상마다 상당히 다른 것으로 추정된다. 이는 광화작용시 존재했던 유체의 순환이 매우 국지적인 범위에서 제한적으로 이루어졌기 때문인 것으로 판단된다 동진 광상의 경우는 광상에 배태된 납의 근원이 상당부분 기저지각에서 용출된 것임을 시사하며, 광화작용시 화성암은 운광암으로서보다는 유체의 순환을 야기한 열원으로서 중요한 역할을 담당한 것으로 판단된다.

인도네시아 중부 칼리만탄 쿠알라쿠룬 지역의 지질: I. 층서 및 구조 (Geology of the Kualkulun in the Middle Kalimantan, Indonesia: I. Stratigraphy and Structure)

  • 김인준;기원서;송교영;김복철;이사로;이규호
    • 자원환경지질
    • /
    • 제37권5호
    • /
    • pp.437-457
    • /
    • 2004
  • 인도네시아 중부 칼리만탄 쿠알라쿠룬 지역의 지질은 하부로부터 석탄-페름기의 피노변성암류, 백악기 세파욱심성암류, 에오세말기의 탄중층과 올리고세의 말라산화산암류로 구성되며, 올리고세-마이오세초기의 신탕관입암류가 상기한 모든 지층들을 관입하고 있다. 퇴적층인 탄중층은 전체적으로 북쪽으로부터 남쪽으로 발달하는 고수류계를 유지하는 삼각주 환경과 천해 해저 환경에서 퇴적되었다. 고생대 후기의 변성퇴적암류가 퇴적된 이후부터 발생한 4회의 변형작용이 인지된다. D1 변형작용은 광역변성작용을 수반한 변성암류의 습곡작용 및 S1 편리구조 형성으로 특징 지워진다. D2 변형작용은 백악기 화강암질암 내에 발생한 연성전단작용이며, D3 변형작용은 북동 내지 동북동 방향의 축을 갖는 습곡작용 및 이에 수반된 S2 파랑벽개의 형성으로 정의된다. D4 변형작용은 제3기 동안 남-북 방향의 압축응력하에서 발생한 단층작용으로서, 북동 방향의 좌수향 주향이동단층, 북서 방향의 우수향 주향이동단층, 남-북 내지 북북동 방향의 정단층 등이 형성 되었다. 이 단층작용은 제3기 지층의 퇴적과 분포에 영향을 끼친 것으로 해석된다.

중부 옥천대에 분포하는 대보 화강암질 저반의 화학조성 : 예비보고서 (Geochemistry of the Daebo Granitic Batholith in the Central Ogcheon Belt, Korea : A Preliminary Report)

  • 정창식;장호완
    • 자원환경지질
    • /
    • 제29권4호
    • /
    • pp.483-493
    • /
    • 1996
  • 중부 옥천대에 분포하는 대보 화강암질 저반의 주원소, 미량원소 조성으로부터 조구조환경과 기원물질의 특징을 연구하였다. 화강암류는 흑운모 화강암, 조립질 반상화강암 및 화강섬록암으로 나눌 수 있다. 화강암류의 불규칙적인 Na, K 함량변화는 분별정출작용만으로 설명될 수 없고 기원물질의 불균질성이나 다양한 기원물질의 불완전한 혼합을 반영하는 것으로 생각된다. 대보 화강암에서 나타나는 친석 원소(LIL element)의 부화와 낮은 Ta/Hf비는 정상적인 칼크 알칼리 계열의 대륙 연변부 호 화강암의 특징과 부합된다. 희토류원소 변화양상으로 보아 $SO_2$ 함량이 높은 흑운모 화강암을 보다 염기성인 화강섬록암의 후기 분화체로 보기는 어렵다. 대보 화강암의 ${\varepsilon}_{Nd}(t)$값과 친석 원소의 함량은 서로 체계적인 변화를 보이지 않아 그들의 지화학적 특징이 초생적인 용융체와 지각 물질 사이의 혼합에 의해 규정되었을 가능성을 배제한다. 대보 화강암의 지구화학적 특징은 주로 기원물질의 고유한 불균질성을 반영한다고 보아진다.

  • PDF

경상분지내 열수광상의 광화작용과 백악기 화강암류의 화학성분 변화와의 관계 (Mineralization of Hydrothermal Ore Deposits in Relation to Chemical Variation of the Cretaceous Granitoids in the Gyeongsang Basin)

  • 이재영;이진국;이인호;김상욱
    • 자원환경지질
    • /
    • 제27권4호
    • /
    • pp.363-373
    • /
    • 1994
  • The Cretaceous granitic rocks show differences in rock types and chemical compositions according to metallogenic provinces of copper, lead zinc and molybdenum in the Gyeongsang basin. Jindong granites are of granodiorite~quartz diorite~diorite in Cu-province; Makeunsan/Yucheon-Eonyang granites, granodiorite~granite in Pb Zn-province; Onjeongri-Yeonghae granites, granodiorite~quartz diorite in Mo-province, and there is a trend that productive masses are less differenciated than barren masses in Cu and Pb-Zn provinces whereas productive masses are more differenciated than barren masses in Mo province. Metallogenic provinces are distinguishable by variations of major and trace elements. The Cretaceous granitic rocks are highest in the content of Ca, Mg and other basic major elements and lowest in the content of K and Na in Cu provicne; the variation trends are vice versa in Pb-Zn province. Trace elements such as Rb and Sr show variations related to K and Ca, and metallogenic provinces are also distinguishable by their ratios. The granitic rocks of Mo province have intermediate content of major and trace elements, but are clearly distinguishable from Jindong granites and partly overlapped by Yucheon-Eonyang granites. Chlorine content in biotites is higher in a productive mass than in a barren mass in Cu province. Therefore, the mineralogical and chemical compositions are applicable as geochemical index to distinguish the types of mineralizaion, and productive and barren masses of the Cretaceous granitic rocks in the Gyeongsang basin.

  • PDF

부평 은광산 지역의 유문암질암의 화강암류의 K-Ar연령과 Nd, Sr 동위원소 (Nd and Sr Isotopes and K-Ar Ages of the Granitic and Rhyolitic Rocks from the Bupyeong Silver Mine Area)

  • 김규한;타나카 츠요시;나가오카 케이스케
    • 자원환경지질
    • /
    • 제31권2호
    • /
    • pp.149-158
    • /
    • 1998
  • Volcanic rocks including rhyolitic tuff, rhyolite and welded tuff in the Bupyeong silver mine area form a topographic circular structure known as a resurgent caldera. Granitic rocks are emplaced inside and outside area of the circular structure. K-Ar dating and Nd-Sr isotope studies were carried out to invesitigate the origin and petrogenetic evolution of the rhyolitic and granitic magma in the Bupeong silver mine area. Whole rock K-Ar age ranges from 208 to 131 Ma for rhyolitic rocks. Radiometric ages for the granitic rocks are 167.6 Ma for pink feldspar biotite granite from inside granitic pluton of the circular volcanic body, 178.8 Ma for the Kimpo hornblende biotite granite and 111.8 Ma for the Songdo foliated granite from outside granitic plutons of the volcanic body. The radiometric age data indicates that the volcanic activities which are partly overlapped by granite plutonic activities in the Bupyeong mine area had recorded early Jurassic and early Cretaceous in age. Initial Sr and Nd isotopic ratios of the rhyolitic rocks ($^{87}Sr/^{86}Sr$=0.710~0.719 and $^{143}Nd/^{144}Nd$=0.5115~0.5118) are similar to those of granitic rocks ($^{87}Sr/^{86}Sr$=0.709~0.716 and $^{143}Nd/^{144}Nd$=0.5115~0.5116) from inside granite stock. This means that similar source materials of felsic magma responsibles for the Bupyeong volcanic rocks and inside plutonic rocks. Based on the Nd and Sr isotopic compositions, rhyolitic and granitic magmas in the Bupyeong area originated from the partial melting of the old continental crust which has Nd model age ranging from 1500 to 2900 Ma. This is analogous to those of the other Jurassic granitoids in South Korea.

  • PDF