• 제목/요약/키워드: granitic rock

검색결과 221건 처리시간 0.023초

언양(彦陽) 및 울산지역(蔚山地域) 화강암질암류(花崗岩質岩類)의 암석화학적(岩石化學的) 연구(硏究) (Petrochemistry of granitic rocks from the Eonyang and the Ulsan area)

  • 이윤종
    • 자원환경지질
    • /
    • 제13권2호
    • /
    • pp.69-79
    • /
    • 1980
  • Granitic rocks, from the Eonyang and the northwestern part of Ulsan area, were mainly studied from the petrochemical point of view. From field work, microscopic observation and the result of K-Ar ages, these granitic rocks are divided into six rock types of a, b, c, d, e and e', of which modal composition are given. Type a, c, e and e' are mainly granodiorite, type b is adamellite, and type d is granodiorite, adamellite and others (porphyritic rock, porphyry and felsitic rocks). Bulk chemical analyses of 22 samples of the granitic rocks are given. The petrographical and petrochemical characteristics of these rocks are discussed briefly. In the petrochemical compositions with their characteristic variation trends of several oxides and norm Or-Ab-An triangular diagram, type a, b and c show some similarity to that of San-yo granite of Japan and younger granite of Ogcheon geosynclinal zone, and then, type e and e', to San-in granite of Japan. But, some of granitic rock samples of type d are similar to San-yo granite and the others of type d to San-in granite because this type is composed of porphyritic rock, porphyry and felsitic rocks. According to the result of K-Ar ages (1976, Lee et al.) of rock samples from type a, b and care Cretaceous, on the otherwise, type d, e and e', are Tertiary granitic rocks. Judging from these evidences, granitic rocks in the area are correlated to the Cretaceous and Tertiary granitic rocks in the, southwestern Japan, that is, type a, band c are correlated to San-yo granite, and type d, e and e' to San-in granite.

  • PDF

한반도 동해안의 모래해안 발달과 암석 분포 사이의 상관성 (The Relation between Sandy Shore Distribution and Basic Rock in the East Coast of the Korean Peninsula)

  • 김영래
    • 한국지형학회지
    • /
    • 제25권4호
    • /
    • pp.21-35
    • /
    • 2018
  • The distribution and size of sandy beaches along eastern Korea has a close relationship with the presence of granite rocks. In general, elongated and wide beaches with abundant sands are likely to develop along the coasts where granitic basic rocks comprise the dominant geology or where a large amount of sands are supplied by streams from inland granitic rocks. Small sandy beaches, in contrast, appear in non-granitic rocks (i.e., under sedimentary and/or metamorphic geology). Hence, large beaches are observed continuously along the shore of Gangwon-do, of which coasts consist predominantly of granitic geology. Such continuity declines from Samcheok city to Pohang city. The rock of Gyeonbuk-do is commonly known as sedimentary, deposited between the late Triassic and the early Tertiary Periods. Because few sands are supplied from the upstream areas, sandy beaches unlikely develop along the coasts of the province, only showing a sporadic, discontinuous distribution under Bulguksa granite, granitic gneiss, and some volcanic rocks. Erosion was rarely observed in the beaches where granitic rocks are distributed, whereas merely five beaches seemed to have undergone some level of erosion in non-granitic regions. This is presumably because a larger amount of sands than that which had been eroded away was replenished in areas under granitic geology, while under non-granitic geology having a deficit in sands, no large sandy beaches had formed at first.

Permeability imaging in granitic rocks based on surface resistivity profiling

  • Sudo Hiroshi;Tanaka Toshikazu;Kobayashi Tsuyoshi;Kondo Tatsutoshi;Takahashi Toru;Miyamoto Masaharu;Amagai Mitsuru
    • 지구물리와물리탐사
    • /
    • 제7권1호
    • /
    • pp.56-61
    • /
    • 2004
  • In order to image the distribution of permeability in granitic rocks, we carried out two-dimensional (2D) resistivity profiling, together with in-situ permeability tests, electrical logging of boreholes, and resistivity measurements of rock core samples in a laboratory. Based on the electrical logging and in-situ permeability data from boreholes, we obtained empirical equations which relate resistivity and permeability of the granitic rocks in the area studied. We then applied the empirical equation to a 2D resistivity section, to produce a 2D permeability section of the granitic rocks. In this paper, we present details of the field data and of the procedure for conversion from the resistivity section to a permeability section. The observed relationship between resistivity and permeability of the rocks is also discussed.

화강암지역의 암반블록규모 단열체계 분포특성 연구 (Characterization of the Spatial Distribution of Fracture System at the Rock Block Scale in the Granitic Area)

  • 김경수;배대석;김천수
    • 터널과지하공간
    • /
    • 제12권3호
    • /
    • pp.198-209
    • /
    • 2002
  • To assess deep geological environment for the research and development of hish-level radioactive waste disposal, six boreholes of 3" in diameter were installed in two granitic areas. An areal extent of the rock block scale in the study sites was estimated by the lineament analysis from satellite images and shaded relief maps. The characterization of fracture system developed in rock block scale was carried out based on the acoustic televiewer logging in deep boreholes. In the Yuseong site, the granite rock mass was divided into the upper and lower zones at around -160m based on the probabilistic distribution characteristics of the geometric parameters such as orientation, fracture frequency, spacing and aperture size. Since the groundwater flow is dependent on the fracture system in a fractured rock mass, the correlation of the fracture frequency and cumulative aperture size to the hydraulic conductivity was also discussed.

암반풍화도에 따른 지질공학적 특성 저감효과 (Effects of Rock Weathering on the Degradation of Engineering Properties)

  • 이창섭;조태진
    • 터널과지하공간
    • /
    • 제15권6호
    • /
    • pp.411-424
    • /
    • 2005
  • 풍화작용은 심부에서 생성된 암석이 지표에서 파괴되고 변질되어 현재의 환경조건과 평형을 이루는 산물을 형성하는 과정이다. 본 연구에서는 국내에서 가장 분포면적이 넓은 화강암질암의 풍화단계별 시료를 채취하여 편광현미경관찰, X-선 회절분석, 전자현미경관찰, 화학분석, 물성시험등을 수행하였다. 실험결과에 의거하여 풍화에 의해 형성되는 2차광물, 특히 점토광물의 형성과정을 확인하였고, 풍화에 따른 암석의 공학적인 성질변화와 물성저하의 메카니즘을 규명하였다.

화강암에 대한 워터젯 파쇄 메커니즘에 관한 연구 (A Study on Waterjet Fracture Mechanism for Granitic Rocks)

  • 오태민;조계춘
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.643-648
    • /
    • 2010
  • Waterjet is a very useful technology for rock excavation because of low level noise and vibration during breaking rocks. To accurately predict the volume and shape excavated by the waterjet, it is important to understand waterjet fracture mechanisms. There have been various theoretical assumptions and approaches in the literature. In this study, waterjet mechanisms are classified into three standards: a mechanism scale, theoretical assumption for a target material, and jet phase. In addition, through a waterjet experimental study for weathered and intact granitic rocks, a fracture shape is observed and analyzed on comparison with the previous mechanisms. As a result, best waterjet mechanisms are selected to explain the fracture pattern of the granitic rocks.

  • PDF

서울 무악재 절취사면에서의 암판정 연구 (Classification of Rock Mass on Cutting Slopes in Muakjae, Seoul)

    • 터널과지하공간
    • /
    • 제9권2호
    • /
    • pp.158-167
    • /
    • 1999
  • 주관적이고 정성적인 암판정 방법들 때문에 굴착될 토충과암석의 물량과 이에 따른 굴착비용 산정시에 일반적으로 어려움이 많다. 그러므로 본 논문은 굴착 목적에서 서울 화강암에 대하여 객관적이고 정량적이고 쉽게 적용될 수 있는 암반판정 방법들을 제시한다. 슈미트해머와 점하중강도 시험들은 서울 화강암의 암석에 대한 일축압축강도를 정량적으로 추정하기 위한 신뢰도가 높고 손쉽게 수행할 수 있는 방법들로서 입중되었다. 또한 지표면에서 약 12m 깊이인 천부지역의 화강암 암반상태를 확인하기 위하여, 지반조건을 직접 관찰할 수 있는 수직 절취사면의 최상부에서 현장 탄성파탐사 방법이 사용되었다. 이로서 현장 탄성파탐사로서 암반 상태 및 깊이를 판단하는 신뢰성을 확인할 수 있었는데 매우 정확한 1 m의 오차만 있었다. 그러므로 비교적 천부인 서을 화강암 암반의 굴착난이도 상태를 판단하기 위하여 현장에서 절취사면에 대한 정밀 지반조사방법은 매우 유용하고 경제적인 방법으로서 고려될 수 있다.

  • PDF

거제지역 화강암체의 지질공학적 특성 (A Study on the Engineering Characteristics of Granitic Rock Masses in Geoje Island)

  • 조태진;김혁진
    • 지질공학
    • /
    • 제5권2호
    • /
    • pp.139-153
    • /
    • 1995
  • 현장시추코어를 이용한 역학적, 수리학적 분석을 수행하여 거제지역 화강암체의 공학적 특성을 산정하였다. 코어분석시에 현장응력의 영향이 고려될 수 없어서 암반불류에 의거하여 산정된 공학적 성질들이 현장실험결과와 상이하게 도출되기도 하였다. 암반분류, 공내실험 및 실내실험 결과에 근거하여 지하공동 설계에 대한 경험적 계수들을 산정하였다. 거제도 남단에 분포하는 화강암체의 경우, 비록 균열대가 존재하지만, 상당히 양호한 암반상태를 나타내고 있으며, 대규모 지하시설도 용이하게 건설될 수 있을 것으로 기대된다.

  • PDF

선(先)캠브리아기(紀) 분천(汾川) 및 홍제사화강암류(홍제사화강암류)의 흑운모(黑雲母)에 대(對)한 K-Ar 연대측정(年代測定) (K-Ar Ages on Biotites of the Proterozoic Buncheon and Hongjesa Granitic Rocks in the northeastern Part of the Sobaegsan Massif)

  • 홍영국;최태윤
    • 자원환경지질
    • /
    • 제19권2호
    • /
    • pp.147-151
    • /
    • 1986
  • K-Ar ages on biotites have been determined from the Proterozoic Buncheon and Hongjesa granitic rocks in comparison with the Rb-Sr whole-rock ages to investigate the ages of metamorphic events. The Rb-Sr whole-rock ages determinations on the Buncheon and Hongjesa granitoid rocks were previously reported as 2,100Ma and 1,700Ma, respectively. K-Ar ages on biotites separated from the studied rock have revealed three different age groups such as 1) 1,200~1,300Ma, 2) 600~700Ma and 3) 300~400Ma. The Rb-Sr whole-rock ages for the granitic rocks represent the time of emplacement, whereas the K-Ar ages on biotites generally indicate the time of metamorphism or alteration. The large discordance in the two age systems may not be explained as indicating the cooling period of the granitic batholiths. The K-Ar ages on biotites from the granitoid rocks might not be simply interpreted as the age of the last phase of metamorphism, since the granitic rocks had been undergone multistages of amphibolite facies-metamorphism in the Precambrian period. During the multistages of intermediate grade metamorphism, $^{40}Ar$-loss could be inevitably taken place as the metamorphic temperatures went up above the blocking temperature of biotite ($300{\pm}50^{\circ}C$). The results of the K-Ar dating on biotites from this study are probably minimum ages or hydrothermal alteration ages.

  • PDF

암석의 종류와 방향에 따른 물리적 특성과 상호관계 (Characteristics of Physical Properties of Rocks and Their Mutual Relations)

  • 원연호;강추원;김종인;박현식
    • 터널과지하공간
    • /
    • 제14권4호
    • /
    • pp.261-268
    • /
    • 2004
  • The main objectives of this study are to investigate the anisotropic characteristics of rocks and to evaluate the relationships between physical properties. A series of experiments were performed in three mutually perpendicular directions for three rock types, which are granite, granitic gneiss and limestone. The relationships of measured physical properties were evaluated. The results of ultrasonic wave velocity measurement show that granite of three rock types gives the largest directional difference, and that the wave velocity in a plane parallel to a transversely isotropic one is dominantly faster than that in a subvertical or vertical plane. It implies that ultrasonic wave velocity for rock could be used as a useful tool for estimating the degree of anisotropy. The ratio of uniaxial compressive strength to Brazilian tensile strength ranges approximately from 13 to 16 for granite. from 8 to 9 for granite gneiss, and from 9 to 18 for limestone. The directional differences for granite and granitic gneiss are very small, and on the other hand, is relatively large for limestone. It is suggested that strength of rock makes quite difference depending on the rock types and loading directions, especially for the anisotropic rocks such as transversely isotropic or orthotropic rocks. The ratio of uniaxial compressive strength to point load strength index ranges from 18 to 20 for granite, from 17 to 19 for granitic gneiss, and from 21 to 24 for limestone. These results show that point load strength index makes also a difference depending on rock types and directions. Therefore. it should be noted that the ratio of uniaxial compressive strength to point load strength index could be applied to all rock types. Uniaxial compressive strength shows relatively good relationship with point load strength index, Schmidt hammer rebound value, and tensile strength. In particulat, point load strength index is shown to be the best comparative relationship. It is indicated that point load test is the most useful tool to estimate an uniaxial compressive strength indirectly.