• Title/Summary/Keyword: granitic rock

Search Result 221, Processing Time 0.023 seconds

Petrochemistry of granitic rocks from the Eonyang and the Ulsan area (언양(彦陽) 및 울산지역(蔚山地域) 화강암질암류(花崗岩質岩類)의 암석화학적(岩石化學的) 연구(硏究))

  • Lee, Yoon Jong
    • Economic and Environmental Geology
    • /
    • v.13 no.2
    • /
    • pp.69-79
    • /
    • 1980
  • Granitic rocks, from the Eonyang and the northwestern part of Ulsan area, were mainly studied from the petrochemical point of view. From field work, microscopic observation and the result of K-Ar ages, these granitic rocks are divided into six rock types of a, b, c, d, e and e', of which modal composition are given. Type a, c, e and e' are mainly granodiorite, type b is adamellite, and type d is granodiorite, adamellite and others (porphyritic rock, porphyry and felsitic rocks). Bulk chemical analyses of 22 samples of the granitic rocks are given. The petrographical and petrochemical characteristics of these rocks are discussed briefly. In the petrochemical compositions with their characteristic variation trends of several oxides and norm Or-Ab-An triangular diagram, type a, b and c show some similarity to that of San-yo granite of Japan and younger granite of Ogcheon geosynclinal zone, and then, type e and e', to San-in granite of Japan. But, some of granitic rock samples of type d are similar to San-yo granite and the others of type d to San-in granite because this type is composed of porphyritic rock, porphyry and felsitic rocks. According to the result of K-Ar ages (1976, Lee et al.) of rock samples from type a, b and care Cretaceous, on the otherwise, type d, e and e', are Tertiary granitic rocks. Judging from these evidences, granitic rocks in the area are correlated to the Cretaceous and Tertiary granitic rocks in the, southwestern Japan, that is, type a, band c are correlated to San-yo granite, and type d, e and e' to San-in granite.

  • PDF

The Relation between Sandy Shore Distribution and Basic Rock in the East Coast of the Korean Peninsula (한반도 동해안의 모래해안 발달과 암석 분포 사이의 상관성)

  • Kim, Young-Rae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.4
    • /
    • pp.21-35
    • /
    • 2018
  • The distribution and size of sandy beaches along eastern Korea has a close relationship with the presence of granite rocks. In general, elongated and wide beaches with abundant sands are likely to develop along the coasts where granitic basic rocks comprise the dominant geology or where a large amount of sands are supplied by streams from inland granitic rocks. Small sandy beaches, in contrast, appear in non-granitic rocks (i.e., under sedimentary and/or metamorphic geology). Hence, large beaches are observed continuously along the shore of Gangwon-do, of which coasts consist predominantly of granitic geology. Such continuity declines from Samcheok city to Pohang city. The rock of Gyeonbuk-do is commonly known as sedimentary, deposited between the late Triassic and the early Tertiary Periods. Because few sands are supplied from the upstream areas, sandy beaches unlikely develop along the coasts of the province, only showing a sporadic, discontinuous distribution under Bulguksa granite, granitic gneiss, and some volcanic rocks. Erosion was rarely observed in the beaches where granitic rocks are distributed, whereas merely five beaches seemed to have undergone some level of erosion in non-granitic regions. This is presumably because a larger amount of sands than that which had been eroded away was replenished in areas under granitic geology, while under non-granitic geology having a deficit in sands, no large sandy beaches had formed at first.

Permeability imaging in granitic rocks based on surface resistivity profiling

  • Sudo Hiroshi;Tanaka Toshikazu;Kobayashi Tsuyoshi;Kondo Tatsutoshi;Takahashi Toru;Miyamoto Masaharu;Amagai Mitsuru
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.56-61
    • /
    • 2004
  • In order to image the distribution of permeability in granitic rocks, we carried out two-dimensional (2D) resistivity profiling, together with in-situ permeability tests, electrical logging of boreholes, and resistivity measurements of rock core samples in a laboratory. Based on the electrical logging and in-situ permeability data from boreholes, we obtained empirical equations which relate resistivity and permeability of the granitic rocks in the area studied. We then applied the empirical equation to a 2D resistivity section, to produce a 2D permeability section of the granitic rocks. In this paper, we present details of the field data and of the procedure for conversion from the resistivity section to a permeability section. The observed relationship between resistivity and permeability of the rocks is also discussed.

Characterization of the Spatial Distribution of Fracture System at the Rock Block Scale in the Granitic Area (화강암지역의 암반블록규모 단열체계 분포특성 연구)

  • 김경수;배대석;김천수
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.198-209
    • /
    • 2002
  • To assess deep geological environment for the research and development of hish-level radioactive waste disposal, six boreholes of 3" in diameter were installed in two granitic areas. An areal extent of the rock block scale in the study sites was estimated by the lineament analysis from satellite images and shaded relief maps. The characterization of fracture system developed in rock block scale was carried out based on the acoustic televiewer logging in deep boreholes. In the Yuseong site, the granite rock mass was divided into the upper and lower zones at around -160m based on the probabilistic distribution characteristics of the geometric parameters such as orientation, fracture frequency, spacing and aperture size. Since the groundwater flow is dependent on the fracture system in a fractured rock mass, the correlation of the fracture frequency and cumulative aperture size to the hydraulic conductivity was also discussed.

Effects of Rock Weathering on the Degradation of Engineering Properties (암반풍화도에 따른 지질공학적 특성 저감효과)

  • Lee Chang-Sup;Cho Taechin
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.411-424
    • /
    • 2005
  • Weathering is defined as a process by which surface rock, once formed in the deep ground, is broken down and altered to keep the equilibrium with the ambient environment. In this study granitic rock samples of different weathering grades were collected in the field and the microscopic observation, X-ray diffraction analysis, electron microscopic observation, chemical analysis, and rock property tests were carried out. Formation of secondary minerals, especially clay minerals, by weathering was identified and the mechanism for the change of engineering properties such as rock strength degradation was analyzed. Tunnel model test, Failure behaviour, Shallow tunnel, Unsupproted tunnel length.

A Study on Waterjet Fracture Mechanism for Granitic Rocks (화강암에 대한 워터젯 파쇄 메커니즘에 관한 연구)

  • Oh, Tae-Min;Cho, Gye-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.643-648
    • /
    • 2010
  • Waterjet is a very useful technology for rock excavation because of low level noise and vibration during breaking rocks. To accurately predict the volume and shape excavated by the waterjet, it is important to understand waterjet fracture mechanisms. There have been various theoretical assumptions and approaches in the literature. In this study, waterjet mechanisms are classified into three standards: a mechanism scale, theoretical assumption for a target material, and jet phase. In addition, through a waterjet experimental study for weathered and intact granitic rocks, a fracture shape is observed and analyzed on comparison with the previous mechanisms. As a result, best waterjet mechanisms are selected to explain the fracture pattern of the granitic rocks.

  • PDF

Classification of Rock Mass on Cutting Slopes in Muakjae, Seoul (서울 무악재 절취사면에서의 암판정 연구)

    • Tunnel and Underground Space
    • /
    • v.9 no.2
    • /
    • pp.158-167
    • /
    • 1999
  • There are substantial difficulties in assessing the volume of soill/rock to be excavated and the cost thereof, which is attributable to the subjective and qualitative methods of rock mass classification prevailing at the moment. This paper intends to introduce more objective and quantitative rock mass classification method easily applicable to the excavation of granites in Muakjae, Seoul. As a result of such study it is proven that Schmidt hammer and point load strength tests are fairly reliable and easily applicable to estimate and quantify uniaxial compressive strength of granitic material in Seoul. In an efforts to confirm the granitic rock mass conditions in 12 meters underground, seismic refraction surveys were made on the top of vertical exposures from where underlying rock mass conditions could be directly inspected. Rock mass boundaries determined by seismic refraction methods were found to agree within a 1m variance with visible differences in rock mass conditions in the vertical exposure beneath the test site. Thus it can be concluded that detailed geotechnical mapping on cutting slopes is a most efficient, dependable and cost-effective technique in assessing likely excavation conditions of shallow granitic mass in Seoul.

  • PDF

A Study on the Engineering Characteristics of Granitic Rock Masses in Geoje Island (거제지역 화강암체의 지질공학적 특성)

  • 조태진;김혁진
    • The Journal of Engineering Geology
    • /
    • v.5 no.2
    • /
    • pp.139-153
    • /
    • 1995
  • Engineering characteristics of granitic rock masses in Geoje island were estimated by investigating the mechanical and hydraulic properties of core samples drilled in - situ. Since the effect of in -situ stresses could not be considered, some of the engineering properties estimated through rock mass classification were quite different from the in - situ tested results. Based on the results of rock mass classification, borehole tests, and laboratory test the empirical parameters for the design of underground structure were assessed. Though some number of fractured zones were found, granitic rock mass in the southern part of Geoje island showed fairly good quality and the excavating conditions were expected to be suitable for the construction of large scale underground facilities.

  • PDF

K-Ar Ages on Biotites of the Proterozoic Buncheon and Hongjesa Granitic Rocks in the northeastern Part of the Sobaegsan Massif (선(先)캠브리아기(紀) 분천(汾川) 및 홍제사화강암류(홍제사화강암류)의 흑운모(黑雲母)에 대(對)한 K-Ar 연대측정(年代測定))

  • Hong, Young Kook;Choi, Tae Yun
    • Economic and Environmental Geology
    • /
    • v.19 no.2
    • /
    • pp.147-151
    • /
    • 1986
  • K-Ar ages on biotites have been determined from the Proterozoic Buncheon and Hongjesa granitic rocks in comparison with the Rb-Sr whole-rock ages to investigate the ages of metamorphic events. The Rb-Sr whole-rock ages determinations on the Buncheon and Hongjesa granitoid rocks were previously reported as 2,100Ma and 1,700Ma, respectively. K-Ar ages on biotites separated from the studied rock have revealed three different age groups such as 1) 1,200~1,300Ma, 2) 600~700Ma and 3) 300~400Ma. The Rb-Sr whole-rock ages for the granitic rocks represent the time of emplacement, whereas the K-Ar ages on biotites generally indicate the time of metamorphism or alteration. The large discordance in the two age systems may not be explained as indicating the cooling period of the granitic batholiths. The K-Ar ages on biotites from the granitoid rocks might not be simply interpreted as the age of the last phase of metamorphism, since the granitic rocks had been undergone multistages of amphibolite facies-metamorphism in the Precambrian period. During the multistages of intermediate grade metamorphism, $^{40}Ar$-loss could be inevitably taken place as the metamorphic temperatures went up above the blocking temperature of biotite ($300{\pm}50^{\circ}C$). The results of the K-Ar dating on biotites from this study are probably minimum ages or hydrothermal alteration ages.

  • PDF

Characteristics of Physical Properties of Rocks and Their Mutual Relations (암석의 종류와 방향에 따른 물리적 특성과 상호관계)

  • 원연호;강추원;김종인;박현식
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.261-268
    • /
    • 2004
  • The main objectives of this study are to investigate the anisotropic characteristics of rocks and to evaluate the relationships between physical properties. A series of experiments were performed in three mutually perpendicular directions for three rock types, which are granite, granitic gneiss and limestone. The relationships of measured physical properties were evaluated. The results of ultrasonic wave velocity measurement show that granite of three rock types gives the largest directional difference, and that the wave velocity in a plane parallel to a transversely isotropic one is dominantly faster than that in a subvertical or vertical plane. It implies that ultrasonic wave velocity for rock could be used as a useful tool for estimating the degree of anisotropy. The ratio of uniaxial compressive strength to Brazilian tensile strength ranges approximately from 13 to 16 for granite. from 8 to 9 for granite gneiss, and from 9 to 18 for limestone. The directional differences for granite and granitic gneiss are very small, and on the other hand, is relatively large for limestone. It is suggested that strength of rock makes quite difference depending on the rock types and loading directions, especially for the anisotropic rocks such as transversely isotropic or orthotropic rocks. The ratio of uniaxial compressive strength to point load strength index ranges from 18 to 20 for granite, from 17 to 19 for granitic gneiss, and from 21 to 24 for limestone. These results show that point load strength index makes also a difference depending on rock types and directions. Therefore. it should be noted that the ratio of uniaxial compressive strength to point load strength index could be applied to all rock types. Uniaxial compressive strength shows relatively good relationship with point load strength index, Schmidt hammer rebound value, and tensile strength. In particulat, point load strength index is shown to be the best comparative relationship. It is indicated that point load test is the most useful tool to estimate an uniaxial compressive strength indirectly.