• Title/Summary/Keyword: grain quality

Search Result 1,251, Processing Time 0.037 seconds

Growth and Quality Characteristics in Response to Elevated Temperature during the Growing Season of Korean Bread Wheat

  • Chuloh Cho;Han-Yong Jeong;Yulim Kim;Jinhee Park;Chon-Sik Kang;Jong-Min Ko;Ji-Young Shon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.124-124
    • /
    • 2022
  • Wheat (Triticum aestivum L.) is the major staple foods and is in increasing demand in the world. The elevated temperature due to changes in climate and environmental conditions is a major factor affecting wheat development and grain quality. The optimal temperature range for winter wheat is between 15~25℃, it is necessary to study the physiological characteristic of wheat according to the elevated temperature. This study presents the effect of elevated temperature on the yield and quality of two Korean bread wheat (Baekkang and Jokyoung) in a temperature gradient tunnel (TGT). Two bread wheat cultivars were grown in TGT at four different temperature conditions, i.e. TO control (near ambient temperature), T1 control+1℃, T2 control+2℃, T3 control+3℃. The period from sowing to heading stage has accelerated, while the growth properties including culm length, spike length and number of spike, have not changed by elevated temperature. On the contrary, the number of grains per spike and grain yield was reduced under T3 condition compared with that of control condition. In addition, the. The grain filling rate and grain maturity also accelerated by elevated temperature (T3). The elevating temperature has led to increasing protein and gluten contents, whereas causing reduction of total starch contents. These results are consistent with reduced expression of starch synthesis genes and increased gliadin synthesis or gluten metabolism genes during late grain filling period. Taken together, our results suggest that the elevated temperature (T3) leads to reduction in grain yield regulating number of grains/spike, whereas increasing the gluten content by regulating the expression of starch and gliadin-related genes or gluten metabolism process genes expression. Our results should be provide a useful physiological information for the heat stress response of wheat.

  • PDF

Variation of Grain Quality and Grain Filling Rapidity Milyang 23 / Gihobyeo Recombinant Inbred Lines (벼 밀양 23호$\times$기호벼의 재조합 자식계통에서 초기급속등숙과 미질 특성)

  • 곽태순;여준환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.160-166
    • /
    • 2004
  • This study was carried out to get the basic informations regarding the varietal variations for the physicochemical properties such as protein content, amylose content, fatty acid content, grain quality values and color properties such as lightness value, chroma and hue for the 164 recombinant inbred lines(RILs) of Milyang 23 and Gihobyeo(M/G) at the experimental farm in the Sangji University. The principal component analysis and heritability study were conducted for this experiments. The rapidity of grain filling(RCF) for the 164 M/G RILs could be classified into four groups such as slow maturing group less than 41%, mid-slow maturing group 41∼60%, fast maturing group 61∼80% and very fast maturing group more than 81% based on the rapidity of grain filling rate. The slow maturing group of RGF showed a little bit higher protein content 9.1%, compared to the other RGF groups. However, the amylose content of all the RGF groups revealed the same content by the groups. The very fast maturing group of RGF showed longer grain length in brown rice compared to other RGF varietal groups, in case of grain width in brown rice showed shorter than any other groups. The alkali digestive value which was so much related to gelatinization temperature showed 3.40 degree at fast maturing group of RGF in M/G RILs. However, the very fast maturing group of RGF revealed 4.31 degree of alkali digestive value. The principal component analysis was performed by the chemical and color properties such as quality value, protein content, amylose content, alkali digestive value, fatty acid content, lightness value, chroma and hue for M/G RILs. The first principal component was able to explained upto 36% to total informations. It was corresponded to quality value, protein content, amylose content, fatty acid content, lightness value and a-value(green -1 red). The characters regarding grain quality showed high heritable properties more than 75% of heritability, but color characters appeared relatively lower heritability compared to grain quality.

The importance of NIR spectroscopy in the estimation of nutritional quality of grains for ruminants

  • Flinn, Peter C.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1612-1612
    • /
    • 2001
  • The production of grain for export and domestic use is one of Australia's most important agricultural industries, and the NIR technique has been used extensively over many years for the routine monitoring of grain quality, particularly moisture and protein content. Because most Australian grain is intended for human food production, the determinants of grain quality for livestock feed, apart from protein, have been largely ignored. However the increasing use of grain for feeding to pigs, poultry, beef cattle and dairy cows has led to an important national research project entitled “Premium Grains for Livestock”. Two of the objectives of this project are to determine the compositional and functional characteristics of grains which influence their nutritional quality for the various classes of livestock, and to adopt rapid and objective analytical tests for these quality criteria. NIR has been used in this project firstly to identify a set of grain samples from a large population of breeders' lines which showed a wide spectral variation, and hence a potentially wide variation in nutritional value. The selected samples were not only subjected to an extensive array of chemical, physical and in vitro analyses, but also were grown out to produce sufficient quantities of grain to feed to animals in vivo studies. Additional grains were also strategically selected from farms in order to include the effect of weather damage, such as rain, drought and frost. In this study to date, NIR calibrations have been derived or attempted, on both ground and whole grains, for in vivo dry matter digestibility (DMD), pepsin-cellulase dry matter disappearance, protein, fat, acid detergent fibre, neutral detergent fibre, starch, in sacco DMD and in vitro assays to simulate starch digestion in the lumen and small intestine. Results so far indicate high calibration accuracy for chemical components (SECV 0.3 to 2.6%) and very promising statistics for in vivo DMD (SECV 1.8, $R^2$ 0.93, SD 7.0, range 61.9 to 92.3, n=60). There appears to be some potential for NIR to estimate some in vitro properties, depending upon the accuracy of reference methods and appropriate sample populations. Current work is in progress to extend the range of grains with in vivo DMD values (a very laborious and expensive process) and to increase the robustness of the various NIR calibrations, with the aim of implementing uniform testing procedures for nutritional value of grains throughout Australia.

  • PDF

Study on the relationship between Plastic Deformation and Crystal Grain Change in Warm Forging (온간 단조기에서의 소성변형과 결정입자 변화와의 관계)

  • 이해영;제진수;강성수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.06a
    • /
    • pp.100-123
    • /
    • 1995
  • The relationship between plastic deformation and crystal grain change in warm forging processes of SM100 carbon steel is studied. If the carbon steel is deformed in warm forging temperature (about recrystallization range), the crystal grain and cementite of the internal part are changed, so material properties are changed. Some experimental values, such as the elliptic degree of cementite, the grain size of cementitie and ferrite grain size, are investigated. When the plastic deformation proceeds, the elliptic degree of cementite becomes large, the grain size of cementite particle is small, and the size of ferrite grain appears fine by recrystallization. The elliptic degree of cementite has a considerable effect on formability. The distribution of effective strain in the forging is calculated by the rigid visco-plastic FEM analysis. The effective strain distribution obtained from the FEM simulation is compared with the experimental result. At effective strain 0.3 dynamic recovery and dynamic recrystallization begin, over 2.5 the organization of material has better quality that is suitable for the following cold forming.

High Grain Quality Mid-late Maturing Rice Cultivar 'Yechan' with Lodging Tolerance and Multiple Disease Resistance (내도복 복합내병 최고품질 중만생 벼 '예찬')

  • Baek, Man-Kee;Park, Hyun-Su;Nam, Jeong-Kwon;Cho, Young-Chan;Kim, Ki-Young;Kim, Jeong-Ju;Kim, Woo-Jae;Shin, Woon-Chul;Jeung, Ji-Ung;Kim, Choon-Song;Jeong, Jong-Min;Lee, Keon-Mi;Park, Seul-Gi;Lee, Chang-Min;Suh, Jung-Pil;Lee, Jeom-Ho
    • Korean Journal of Breeding Science
    • /
    • v.51 no.4
    • /
    • pp.504-514
    • /
    • 2019
  • 'Yechan' is a high grain quality mid-late maturing rice cultivar with lodging tolerance and multiple disease resistance. It was a derived from a cross between 'Hopum' and 'Iksan537' (cultivar name 'Haepum'). 'Hopum' is a high grain quality mid-late maturing rice cultivar with strong lodging tolerance and 'Haepum' is a high grain quality medium maturing rice cultivar with multiple disease resistance. To shorten the breeding period, another culture method was applied to the F1 plants. 'Yechan' was selected through the pedigree method, yield trials, and local adaptability tests, with a high selection pressure for grain quality, lodging, and disease resistance. The heading date of 'Yechan' was August 14, one day later than that of 'Nampyeong'. 'Yechan' is a cultivar tolerant to lodging and it has short culms. It has multiple disease resistance against rice blast, rice stripe virus, and bacterial blight, including the K3a race, the most virulent race in Korea. The yield of 'Yechan' was similar to that of 'Nampyeong'. 'Yechan' showed excellent grain appearance, superior taste when cooked, and enhanced milling performance; thus, we concluded that it could contribute to the improvement of Korean japonica rice cultivar quality. 'Yechan', a high grain quality mid-late maturing rice cultivar with lodging tolerance and multiple disease resistance, would be suitable for cultivation in the southern plain area in Korea and has been utilized in the breeding programs aimed at enhancing the grain quality and stability for the cultivation of Korean japonica rice (Registration No. 7647).

Variation of Grain Quality of Rice Varieties Grown at Different Locations II. Relationship between Characteristics Related to Grain Quality (벼품종의 재배지역에 따른 미질특성변이 II. 미질관련형질 상호간의 관계)

  • Kwang-Ho Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.2
    • /
    • pp.137-145
    • /
    • 1990
  • Six commercial rice varieties were cultivated at different locations in 1987 and 1988. Rice samples harvested from 8 to 20 locations for a variety each year were used to measure or observe grain appearance, amylose content and alkali digestibility, cooked rice texture using rheometer, gelatinization and viscosity of rice flour using amylograph, and eating Quality of cooked rice by sensory evaluation. Relationship between Quality characteristics showing large locational variation were analized to approach the long-term objective, rice grain Quality standardization. Percent white-center and white-belly grain of the same variety showed great variation between locations, but did not affect on 1000-grain weight, amylose content and alkali digestibility, amylogram and rheogram characteristics, and eating Quality of cooked rice. Positive correlationship were obtained between maximum viscosity and break down, and maximum viscosity and alkali digestibility. Set back was correlated negatively with maximum viscosity, break down and alkali digestibility. Rice samples having significantly lower values of maximum viscosity and break down and higher set back value at the same time showed higher ADV and lower texture palatability index (TPI) and viscousness/hardness ratio (Vi/H), and lower sensory evaluation score of cooked rice compared with those of rices having typically higher values of maximum viscosity and break down and lower set back value. When TPI, Vi/H and overall sensory eating score of cooked rices measured were divided into three categories, high, medium and low using deviation from locational mean value of a variety, many of rice samples having high TPI or high Vi/H showed medium or high in overall sensory eating score of cooked rice.

  • PDF

Growth and Seed Quality as Affected by Growing Condition in Sesame (참깨 재배조건에 따른 생육과 품질)

  • 김동관;국용인;천상욱;강명화;이주철;김명석;박규철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.443-447
    • /
    • 2002
  • This study was carried out to determine the differences in the growth, grain yield, and seed quality of sesame plant according to seeding date between P,E. vinyl-house and outdoor cultures. Reproductive growth period in vinyl-house culture was shorter than in outdoor culture. Stem length and capsule setting length of sesame were much longer in vinyl-house culture than in outdoor culture. Also, number of capsules per plant and 1,000 grain weight in vinyl-house culture were higher, specially the grain yield was approximately 57% more than in outdoor culture. In vinyl house culture, sesame plants sown on June 8 had longer capsule setting length, more capsules per plant, higher 1,000 grain weight, and higher percent ripened grain at the upper part of the capsule settings than those sown in May 9. They also had higher 1,000 grain weight at the middle and lower part of the capsule settings compared to May 9 seeding. However, no difference in grain yield of in seeding dates was observed. In outdoor culture, sesame plants, which was sown on May 9, had more effective branch number and capsule number and plant compared to those sown on June 8. Though sesame plants sown on May 9 had lower percent ripened grain at the upper and middle part of the capsule settings and lower 1,000 grain weight, the seed yield was similar to those sown on June 8. No difference in chromaticity value $L^*$ of sesame seeds between two culture conditions was observed. The $a^*$ value was higher in vinyl-house culture than outdoor culture while $b^*$ value was higher in outdoor culture. Sesaminol triglucoside content of sesame seeds was higher in vinyl-house culture than in outdoor culture. On the other hand, the content of sesamin and sesamolin from sesame seeds in vinyl-house culture were lower than in outdoor culture.

Effect of Low Radiation During Grain Filling Stage on Rice Yield and Grain Quality (등숙기 일사 저하가 쌀 수량 및 품질에 미치는 영향)

  • Kim, Ki-Young;Ko, Jong-Cheol;Shin, Woon-Cheol;Park, Hyun-Su;Baek, Man-Kee;Nam, Jeong-Kwon;Kim, Bo-Kyeong;Lee, Jeom-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.174-180
    • /
    • 2014
  • This study was conducted to know the effect of low radiation during grain filling stage of rice on its grain yield, components, physicochemical properties and palatability, compared to the effect of natural light. Ripened grain ratio, 1000 grain weight of brown rice, milled rice yield of Mipum, Hopum, and Sindongjin were reduced as the shading treatments become higher. After harvest, physicochemical properties of rice influencing eating quality were investigated. Protein content of milled rice was increased, but palatability was decreased by shading treatments. Change of milled rice proteins and palatability due to shading treatments were found to be less in Mipum than that in Hopum and Sindongjin. With regard to amylogram properties, shading treatments resulted in a significant decrease in peak trough final breakdown viscosities of rice flour, though it increased pasting temperature and setback viscosity. The degree of the 55% shading effect was more intensive than the 35% shading effect in changes of ripened grain ratio, 1000 grain weight of brown rice, milled rice yield and milled rice protein.

Effects of Combine Harvesting and Drying Methods on Grain Quality in Rice Cultivars (벼 품종의 콤바인 수확과 건조방법에 따른 미입질의 변화)

  • Lee, Ho-Jin;Seo, Jong-Ho;Lee, Un-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.3
    • /
    • pp.282-286
    • /
    • 1990
  • Currently, mechanization and automation have been introduced into rice harvest and drying process due to the shortage of man power. After rice cultivars, Chucheong and Milyang #23 were cutted with manual method (H1) or harvested with combine (H2), the threshed grain were dried in natural sun-drying (D1), in natural air in-bin system (D2), or in contineous hot-air drier (D3). We have evaluated grain losses, operation hour, and grain quality on each harvest and drying methods. Shattering loss during harvesting with combine was not dirfered significant from that of manual method, but threshing loss was 1.2% higher in combine harvest than in manual. Operation hours required for combine harvest was 3.5 times faster than for manual, even without head threshing. There was a significant difference bel ween cultivars in harvesting loss, which Milyang #23, a Tongil rice had two times more grain loss than Chucheong, a Japonica rice. Drying hours required to reduce to 14% grain moisture content were ten days for H1D1, 5-9 days for H2 D1, 2-3 days for H2D2, and only 15 hours for H2D3, respectively. In grain quality, complete grain ratio after dehulling was decreased about four percent in H2D3 compared to H1D1. while it was lower in Milyang #23 than in Chucheong, Hot-air drier increased occurence of cracked and broken grain. Combine harvest increased significantly these incomplete grain ratio of :Milyang #23, but not Chucheong.

  • PDF