• Title/Summary/Keyword: grain mold

Search Result 72, Processing Time 0.026 seconds

Effect of Ti, B, Zr Elements on Grain Refinement and Castability of Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe Casting Alloy (주조용 Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe 합금의 결정립 미세화와 주조특성에 미치는 Ti, B, Zr 첨가원소의 영향)

  • Kim, Heon-Joo;Park, Su-Min
    • Journal of Korea Foundry Society
    • /
    • v.35 no.5
    • /
    • pp.120-127
    • /
    • 2015
  • The effects of Ti, B and Zr on grain refinement and castability were investigated in Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe alloy. Measurement of cooling curve and micro-structure observation were performed to analyze the effects of the addition of minor elements Ti, B and Zr during solidification. The prominence of effect on grain refinement was in increasing order for Ti, Zr and B element. Fine grain size and an increase of the crystallization temperature for ${\alpha}$-Al solution were evident as the amount of addition elements increased in this study. Addition of 0.15wt% Ti was most effective for grain refinement, and the resulting grain size of ${\alpha}$-Al solution for shell mold and steel mold were $72.3{\mu}m$ and $23.5{\mu}m$, respectively. Fluidity and shrinkage tests were perform to evaluate the castability of the alloy. Maximum fluidity length and minimum ratio of micro shrinkage were recorded for 0.15wt% Ti addition due to the effect of the finest grain size.

A Study on Mold Filling and Fluidity of Mg Alloy in Thixocasting (Mg합금의 반용융가압주조시 주조조건에 의한 금형충전성 및 유동성 변화)

  • Jung, Woon-Jae;Kim, Ki-Tae;Hong, Chun- Pyo
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.184-193
    • /
    • 1995
  • Effects of process parameters during thixocasting, such as solid volume fraction, mold temperature and extrusion ratio, on the mold filling behaviour and fluidity of Mg alloy(AZ91D) have been investigated. The semi-solid ingot held for 60 minutes at the semi-solid temperature range did not contain the equilibrium volume fraction of solid as expected from the phase diagram. Therefore, in order to obtain the desired solid fractions, and to suppress the exaggerated grain growth during heating, it was required to heat the ingot rapidly up to the temperature $10^{\circ}C$ higher than the semi-solid temperature suggested from the phase diagram for a specific volume fraction of solid. The experimental results show that mold filling behaviour and fluidity can be improved with the use of the higher mold temperature and the lower volume fraction of solid, but remain nearly unaffected by the change of extrusion ratio.

  • PDF

Microstructure and Mechanical Properties of STD11 Steel According to Reheat Treatment (STD11 금형강 재열처리에 따른 미세조직 및 기계적 특성)

  • Park, Gi Yeon;Kwon, Eui Pyo;Heo, Gi Ho
    • Korean Journal of Materials Research
    • /
    • v.32 no.3
    • /
    • pp.139-145
    • /
    • 2022
  • Reheat treatment process of mold is necessary when partial machining of the mold is required, such as shape correction for an existing mold. If defects such as cracks or significant deterioration of mechanical properties of the mold occur during reheat treatment, it is impossible to reuse the mold. In this study, reheat treatment was performed up to two times for STD11 tool steel, and microstructure and mechanical properties according to the reheat treatment were evaluated. Carbide fraction and grain size of prior austenite were almost unchanged after the reheat treatment. Hardness and impact toughness increased significantly after QT treatment, and these properties were maintained without significant change even after the reheat treatment. It is concluded that up to two iterations of reheat treatment does not cause deterioration of properties of STD11 tool steel. Based on these results, a mold for a face-lifted front bumper was manufactured through machining and reheat-treating of an existing mold.

Effect of Solidification Conditions on the Structure and Mechanical Properties of Al-5wt%Mg Alloy by Metallic Mold Casting (중력 금형 주조한 Al-5wt%Mg 합금의 주조 조직과 기계적 성질에 미치는 응고 조건의 영향에 관한 연구)

  • Park, Jun-Young;Kim, Jong-Chul;Kim, Hong-Beom;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.17 no.3
    • /
    • pp.237-244
    • /
    • 1997
  • This study has been carried out to investigate into the influence of solidification conditions mold on the structure and mechanical properties of Al-5wt%Mg alloy by metallic mold casting. The percentage of equiaxed grain of Al-5wt%Mg alloy castings increased both when pouring temperature decreased and when the low part or bottom of metallic mold was cooled. The hardness was checked and showed that hardness of outside in the castings was higher than that inside, and that it is the highest at the pouring temperature of $680^{\circ}C$. The castings had the highest U.T.S. and elongation when the bottom of metallic mold was cooled. At the same pouring temperature, the structure of castings was changed as the position of cooling parts of metallic mold was varied. When the castings were solidified through cooling of the bottom of the metallic mold, the morphology of Fe intermetallic compound has tendency to change to a Chinese script and the U.T.S. and elongation of Al-5wt.%Mg alloy castings was increased.

  • PDF

Machinability Evaluation of Endmill Tool through Development of Ultra-fine Grain Grade Cemented Tungsten Carbide Material (초미립 초경소재 개발을 통한 엔드밀 공구의 성능 평가)

  • 김홍규;서정태;권동현;김정석;강명창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.865-869
    • /
    • 1997
  • In recent years, there has been increasing demand of ultra-fine grain graded cemented tungsten carbide material with high hardness and toughness which is used as high speed cutting tool for development in semiconductor, electronics and die/mold industry, which bring into limelight high-precision, high-efficient machining of sculptured surfaces. This paper deals with the performance of variation in the ultra-fine grain graded cemented tungsten carbide material such as grain size, hardness and density varied according to the volume of added elements, Co or TaC, and he changing of mixing, sintering process. Also, the performance of developing material with uniformed grain size of 0.5${\mu}{\textrm}{m}$ is compared with other domestics' & foreign companies' with analyzing and cutting performance testing.

  • PDF

Mechanical Properties and Mold Filling Capability of Al-Si-Mg Casting Alloy Fabricated by Lost Foam Casting Process (소실모형주조공정으로 제조한 Al-Si-Mg계 주조합금의 기계적 성질 및 주형 충전성)

  • Kim, Jeong-Min;Ha, Tae-Hyung;Choe, Kyeong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.36 no.5
    • /
    • pp.153-158
    • /
    • 2016
  • The lost foam casting process was used to fabricate Al-Si-Mg cast specimens, and the effects of the chemical composition and process variables on the tensile properties and the mold filling ability were investigated. Some porosity formation was observed in thick sections of the casting and better tensile properties were obtained for thin sections, presumably because of their lower porosity and the higher cooling rate. Tensile properties were not clearly enhanced by grain refining treatment with Ti; however, the elongation was significantly improved by Sr modification of the Al-Si-Mg alloy. The mold filling distance was generally proportional to the pouring temperature of the melt, and the distance was also increased by the addition of Ti.

Effects of Alloying Element and Grain Refinement on the Tensile Properties of Mg-Alloy Casted with Sand Mold (사형 주조 마그네슘 합금의 인장 특성에 미치는 합금 원소와 결정립 미세화의 영향)

  • Han, Jae-Jun;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.31 no.4
    • /
    • pp.212-217
    • /
    • 2011
  • The effects of alloying element and grain refinement on the tensile properties of magnesium alloy poured into sand mold were investigated. The strength of magnesium alloy was greatly increased by the addition of aluminium and that was increased with the increased aluminum content added up to 8.10 wt% and decreased beyond that. Even though the strength of Mg-8.10 wt%Al alloy was rather decreased by the addition of zinc, that was increased with increased zinc content added up to 0.50 wt% and decreased with the increased one beyond that. The maximum tensile strength was obtained with 0.50 wt%Mn added. The strength and elongation were simultaneously increased with grain refinement and the optimum amount of strontium addition for this was 0.30 wt%. The optimum chemical composition was obtained and the yield strength, tensile strength and elongation of the alloy with this composition were 90.2, 176.3MPa and 4.43%, respectively.

Influence of initial ECAP passes on the anisotropic behavior of an extruded magnesium alloy (초기 등통로각압출 공정 횟수가 압출된 마그네슘 합금의 이방성에 미치는 영향)

  • Bae, Seong-Hwan;Min, Kyung-Ho
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.34-38
    • /
    • 2016
  • In this paper, a transversely isotropic behavior of AZ31 Mg alloy produced by equal-channel angular pressing (ECAP) process was investigated through tensile test and microstructure observation. The effects of initial ECAP pass number on the anisotropic behavior and mechanical properties of the Mg alloy are evaluated after conventional direct extrusion test, which are carried out at a temperature of $200^{\circ}C$. As a result of the tensile test in three directions ($0^{\circ}$, $45^{\circ}$, and $90^{\circ}$ to the extrusion direction of the sheet) at room temperature, elongation of as-extruded AZ31 alloy(ECAP for 0 pass) showed an unusual anisotropic behavior depending on the extrusion direction although the yield strength and tensile strength are similar to the ECAPed AZ31 alloy. After ECAP for 4 passes at $200^{\circ}C$, microstructural observations of ECAPed magnesium alloy showed a significant grain refinement, which is leading to an equiaxed grain structure with average size of $2.5{\mu}m$. The microstructures of the extruded billet are observed by the use of an electron back-scattering diffraction (EBSD) technique to evaluate of the influence on the grain refinement during extrusion process and re-crystallization mechanism of AZ31 Mg alloy.

Mold Filling and Mechanical Properties of Thin Sectioned Al-Si Alloy Fabricated by Lost Foam Casting Process (소실모형주조법으로 제조한 박판형 Al-Si합금에서의 주형 충전 및 기계적 성질)

  • Kim, Jeong-Min;Lee, Jae-Cheol;Choi, Jin-Young;Cho, Jae-Ik;Choe, Kyeong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.37 no.6
    • /
    • pp.186-192
    • /
    • 2017
  • The lost foam casting method was used to fabricate Al-Si alloy thin sheet specimens; the effects of chemical composition and process variables on the mold filling and mechanical properties were investigated. The mold filling capability was observed to be proportional to the pouring temperature, and both the vibration imposed during the casting and the application of a pattern coating had rather negative effects. The mold filling capability also decreased with the addition of Mg or TiB. When the Mg content increased, the tensile strength of the cast alloy was enhanced, but the elongation decreased. However, after T6 heat treatment, both the strength and the elongation were improved. TiB addition for grain refining or pattern coating did not significantly affect the tensile properties.

Thickness Dependence of CVD-SiC-Based Composite Ceramic for the Mold of the Curved Cover Glass (곡면 커버 글라스용 금형 코팅을 위한 CVD-SiC 기반 세라믹 복합체의 두께에 따른 특성 연구)

  • Kim, Kyoung-Ho;Jeong, Seong-Min;Lee, Myung-Hyun;Bae, Si-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.310-315
    • /
    • 2019
  • The use of a silicon carbide (SiC)-based composite ceramic layer for the mold of a curved cover glass was demonstrated. The stress of SiC/VDR/graphite-based mold structure was evaluated via finite element analysis. The results revealed that the maximum tensile stress primarly occured at the edge region. Moreover, the stress can be reduced by employing a relatively thick SiC coating layer and, therefore, layers of various thicknesses were deposited by means of chemical vapor deposition. During growth of the layer, the orientation of the facets comprising the SiC grain became dominant with additional intense SiC(220) and SiC(004). However, the roughness of the SiC layer increased with increasing thickness of the layer and. Hence, the thickness of the SiC layer needs to be adjusted by values lower than the tolerance band of the curved cover glass mold.