• Title/Summary/Keyword: grain growth behavior

Search Result 284, Processing Time 0.03 seconds

Compressive Deformation Behavior of Al-10Si-5Fe-1Zr Powder Alloys Consolidated by Spark Plasma Sintering Process (Spark Plasma Sintering법에 의해 예비 성형된 Al-10Si-5Fe-1Zr 분말합금의 고온 압축변형 거동)

  • Park, Sang-Choon;Kim, Mok-Soon;Kim, Kyung-Taek;Shin, Seung-Young;Lee, Jeong-Keun;Ryu, Kwan-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.853-859
    • /
    • 2011
  • Compressive deformation behavior of Al-10Si-5Fe-1Zr (wt%) alloy preform fabricated by SPS(spark plasma sintering) of gas atomized powder was investigated in the temperature range from 380 to $480^{\circ}C$ and at strain rates from $1.0{\times}10^{-3}$ to $1.0{\times}10^{0}s^{-1}$. Stress-strain curves showed a peak stress (${\sigma}_p$) during initial stage of deformation, followed by a steady state flow at all temperatures and strain rates tested. The (${\sigma}_p$) decreased with both increase in temperature and decrease in strain rate. Nearly full densification was found to occur in the compressively deformed specimens irrespective of test condition. TEM observation revealed a restricted grain growth during steady state flow.

Dependence of Gas Pressure on Cr Oxide Thin Film Growth Using a Plasma Focus Device (플라즈마 포커스를 이용한 크롬 산화물 박막 성장의 분위기 기체 압력 의존성 연구)

  • Jung, Kyoo-Ho;Lee, Jae-Kap;Im, Hyun-Sik;Karpinski, L.;Scholz, M.;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.17 no.6
    • /
    • pp.308-312
    • /
    • 2007
  • Chromium oxide thin films have been deposited on silicon substrates using a tabletop 9kJ mathertyped plasma focus (PF) device. Before deposition, pinch behavior with gas pressure was observed. Strength of pinches was increased with increasing working pressure. Deposition was performed at room temperature as a function of working pressure between 50 and 1000 mTorr. Composition and surface morphology of the films were analyzed by Auger Electron Spectroscopy and Scanning Electron Microscope, respectively. Growth rates of the films were decreased with pressure. The oxide films were polycrystalline containing some impurities, Cu, Fe, C and revealed finer grain structure at lower pressure.

Cr - Mo鋼 熔接 後熱處理材 의 勞破壞 에 關한 硏究

  • 박재규;김석원;김연식
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.16-26
    • /
    • 1985
  • Post weld heat treatment(PWHT), at more than 600.deg. C, is essential to remove residual stress and hydrogen in weld HAZ and improve fatigue characteristics. However, residual stress during PWHT is responsible for PWHT embitterment and it promotes precipitation of impurities to grain boundary. In this paper, the effect of stress simulated residual stress on fatigue failure was evaluated by fatigue test, microhardness test and fractograph. The obtained results are summarized as follows; (1) The fatigue crack growth rate(da/dN) of parent and heat treated parent was affected by microstructure due to heat treatment and it depended on stress intensity factor (.DELTA.k). (2) The fatigue strength of weld HAZ was dependent on applied stress during PWHT and da/dN after PWHT was slower than as-weld. (3) Softening amount of weld HAZ was bigger than any other due to PWHT. Hardness value of weld HAZ was affected by heat treatment under the applied stress of 10 $kgf/mm^2$, but beyond 20 $kgf/mm^2$ it was increased by the applied stress rather than heat treatment. (4) Beyond the applied stress of 20 $kgf/mm^2$ during PWHT, intergranular fracture surface was observed and its amount was increased with applied stress during PWHT. (5) Effect of applied stress during PWHT on aspect of fracture surface was larger rather than that on fatigue crack growth behavior.

  • PDF

Study on the Recovery and Recrystalligation of Cold-lolled Zr-based Alloys by Thermoelectric Power Measurement During Isothermal Annealing (TEP 분석을 이용한 냉간가공된 Zr-based 합금의 등온열처리에 따른 회복 및 재결정 거동에 관한 연구)

  • O, Yeong-Min;Jeong, Heung-Sik;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.483-491
    • /
    • 2001
  • The recovery and recrystallization behavior of cold-rolled Zr-based alloys during isothermal annealing at temperatures from $575^{\circ}C$ to $650^{\circ}C$ was studied by thermoelectric power and Vickers microhardness measurement. The recovery and recrystallization resulted in the increase of TEP doe to the extinction of lattice defect, vacancy, dislocation and stacking fault during isothermal annealing after cold- rolling. The completion of recrystallization could be determined much clearly by TEP behavior than by microhardness change in Zr-based alloys. Especially, the recovery and recrystallization were classified separately by TEP behavior in Zr-0.4Nb-xSn alloys. From the analysis of TEP behavior and microhardness, the addition of Sn caused to form the interaction between stain field and dislocation, which resulted in the delay of recovery in Zr-based alloys. The precipitation due the addition of Nb suppressed the grain growth after recrystallization effectively in Zr-based alloys.

  • PDF

A Study on the Growth Behavior of $Y_2Ba_1Cu_1O_5$ Phase in Y-Ma-Cu-O System (Y-Ma-Cu-O계에서 $Y_2Ba_1Cu_1O_5$상의 성장거동에 관한연구)

  • Im, Dae-Ho;Song, Myeong-Yeop;Park, Jong-Hyeon;Lee, Hui-Gyun;Won, Dong-Yeon;Hong, Gye-Won
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.870-876
    • /
    • 1994
  • In order to investigate the growth behavior of $Y_{2}Ba_{1}Cu_{1}O_{5}$(211) particles in $Y_{1}Ba_{2}Cu_{3}O_{7-\delta}$(123), 123 samples were quenched in air after heat treatment on polycrystal and single crystal MgO substrates at $1100^{\circ}C$ for various periods. 211 grains grew with the increase in holding time. The growth of 211 grains was faster on the polycrystal MgO substrate than on the single crystal MgO substrate. In the samples with the compositions of 211+xCuO($0.2\le X \le 0.8$), the growth rate of 211 grains increased with the increase in CuO content. In the sample with x=0.6 the largest 211 grains were observed. 211 grains in the $Y_{2}Ba_{1}Cu_{1.8}Sn_{0.1}O_{5+\delta}$ samples were distributed very finely and homogeneously. The retarding effect of $SnO_2$ addition on the growth of 211 grain appeared more pronounced in a CuO melt than in a $BaCuO_{2}$+ CuO melt.

  • PDF

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF

A Study on the Surface Oxidation Behavior of Cube-textured Nickel Substrate (양축 정렬된 니켈기판의 표면 산화반응 연구)

  • Ahn Ji-hyun;Kim Byeong-Joo;Kim Jae-Geun;Kim Ho-Jin;Hong Gye-Won;Lee Hee-Gyoun;Yoo Jai-Moo;Pradeep Halder
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.58-63
    • /
    • 2005
  • We investigated the surface oxidation behavior of cube-textured polycrystalline nickel at various oxidation conditions. Cube-textured NiO film was formed on a cube-textured polycrystalline nickel regardless of oxidation conditions but different growth behavior of NiO crystals was observed depending on the oxidation conditions. The introduction of water vapor into $O_2$ did not affect the texture evolution, but rough and porous microstructure was developed. Microstructure of NiO film tends to be denser as the oxygen partial pressure increases. It is interesting that (111) peak of theta - two theta diffraction pattern started to get stronger in air atmosphere and (111) plane became the major texture in the substrate oxidized in high purity argon gas. Small amount of high index crystallographic plane NiO peak crystal was observed when $N_{2}O$ was used as an oxidant while only (200) plane crystal was formed in dry $O_2$ atmosphere. Flat and smooth surface was changed into rough faceted one when ramping rate to oxidation temperature was faster. The grain size of NiO was decreased when the oxygen partial pressure was low. It was also observed that the modification of nickel surface suppressed the development of (200) texture.

  • PDF

Phase Transitional Behavior and Piezoelectric Properties of 0.94(Na0.5K0.5NbO3-0.06Ba(Ti0.9Sn0.1)O3 Lead-free Ceramics (무연계 0.94(Na0.5K0.5NbO3-0.06Ba(Ti0.9Sn0.1)O3 세라믹의 상전이 거동과 압전 특성)

  • Cha, Yu-Joung;Nahm, Sahn;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.766-771
    • /
    • 2009
  • Lead-free $0.94(Na_{0.5}K_{0.5})NbO_3$-0.06Ba$(Ti_{0.9}Sn_{0.1})O_3$ [0.94NKN-0.06BTS] ceramics doped with 1 mol% $MnO_2$ were synthesized by a conventional solid state method. The phase transitional behavior and piezoelectric properties of the ceramics sintered at various temperatures were investigated. The 0.94NKN-0.06BTS ceramics sintered at $1050^{\circ}C$, having morphotropic phase boundary of orthorhombic and tetragonal phases, exhibited a microstructure with abnormal grain growth. A diffused phase transition behavior for all the specimens was verified as high degree of diffuseness (${\gamma}$) values from 1.45 to 1.79. A high piezoelectric constant of $d_{33}=256$ pC/N and a satisfactory electromechanical coupling factor of $k_p=42%$ were obtained for the relatively dense 0.94NKN-0.06BTS ceramics sintered at $1050^{\circ}C$.

Synthesis of large area·single layer/crystalline graphene (대면적·단일층·단결정 그래핀의 합성)

  • Choi, Byung-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.167-171
    • /
    • 2014
  • Using chemical vapor deposition(CVD), the synthesis of graphene was performed on poly and single crystalline Cu substrates. The growth behavior of graphene and its characterization were shown utilizing the optical microscopic image and its image analysis. As a result in the analysis of graphene growth, it was found out the graphene is growing always in particular direction in relation to the crystalline direction of a single grain in polycrystalline Cu substrate. With the image analysis it was possible to show the characterization of graphene, such as the growth direction and the number of layers showing single, double and triple layers, within the neighboring single grains in polycrystalline Cu. In addition, the relatively large area of graphene with about $3mm^2$ on Cu(111) having high quality, single layer, and single crystalline was shown along with its characterization.

Effect of carbon and boron addition on sintering behavior and mechanical properties of hot-pressed SiC (카본 및 보론 첨가가 탄화규소 열간 가압 소결거동 및 기계적 특성에 미치는 영향)

  • Ahn, Jong-Pil;Chae, Jae-Hong;Kim, Kyoung-Hun;Park, Joo-Seok;Kim, Dae-Gean;Kim, Hyoung-Sun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • SiC has an excellent resistance to oxidation and corrosion, high temperature strength and good thermal conductivity. However, it is difficult to density because of its highly covalent bonding characteristics. Hot-press sintering process was applied to fabricate fully densified SiC ceramics with carbon and boron addition as a sintering additive. The addition of carbon improved the mechanical properties of SiC because it could induce a fine and homogeneous microstructure by the suppression of abnormal growth of SiC grain. Also, the addition of carbon could control the phase transformation of SiC. The phase transformation of 6H to 4H increased with sintering temperature but the addition of carbon decreased that kind of phase transformation.