• Title/Summary/Keyword: grain composition

Search Result 823, Processing Time 0.021 seconds

Spatial Distribution of Macrozoobenthic Organisms along the Korean Coasts in Summer Season (한국 연안의 하계 대형저서동물의 공간분포)

  • LEE, JUNG-HO;LIM, HYUN-SIG;SHIN, HYUN CHOOL;RYU, JONGSEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.2
    • /
    • pp.87-102
    • /
    • 2022
  • To clarify the spatial distribution pattern of macrozoobenthos in Korean coastal waters in the summer season and investigate the relationship between community structure and benthic environmental factors, field surveys on community structure and benthic environmental factors were conducted at 117 stations in August 2017. A total of 613 macrobenthic species were identified, with the mean density of 1,228 ind./m2 and the mean biomass (wet weight) of 110.9 g WW/m2. Rich biodiversity was found at stations near Wando and along the coast of the East Sea, and there is a trend that stations with greater biodiversity also showed higher mean density as well. The dominant species in all the coastal areas in Korea was Heteromastus filiformis, which were found at most of the stations during the survey. The relatively deep areas in the East Sea were dominated by Magelona johnsoni and Maldane cristata, which were the third and ninth dominant species in the study areas, respectively. Pseudopolydora kempi and Rhynchospio sp. were observed only at the station located in the Nakdong River estuary. From the cluster analysis the stations could be clustered into three station groups with more similar faunal composition. Group A was located in the eastern coast, characterized with deep water depth and low levels of sand contents, while Group B was located in the southern coast, characterized by shallow depth of water and high content of mud and organic matter. Lastly, Group C was in the western coast, demonstrating low levels of mud content and organic matters. The biodiversity of macrobenthic species in the study area showed high positive correlation coefficients with benthic environmental factors such as sorting, clay, silt, and contents of organic matter in sediments, but negatively correlated with the sand contents. Major dominant species, Theora lata and Eriopisella sechellensis, both showed negative correlation coefficients with the sand contents, but a relatively high positive correlation with the levels of organic contents.It can be concluded that the spatial distribution patterns of macrobenthic organisms in Korean coastal waters are affected by depth, sediment type, and contents of organic matters.

The Formation Mechanism and Distribution of Benthic Foraminiferal Assemblage in Continental Shelf of the northern East China Sea (북동중국해 대륙붕 저서성 유공충 군집 분포와 형성 기작)

  • Daun Jeong;Yeon Gyu Lee
    • Journal of Marine Life Science
    • /
    • v.8 no.1
    • /
    • pp.8-31
    • /
    • 2023
  • To understand the distribution and formation mechanism of benthic foraminiferal assemblages, grain size analysis, 14C radiocarbon dating, and benthic foraminifera analysis were conducted on thirty-two surface sediments collected from the continental shelf of the northern East China Sea, respectively. Surface sediment was composed of sandy mud~muddy sand facies with an average of 52.04% of sand, 13.72% of silt, and 34.20% of clay. These sedimentary facies are palimpsest sediment. Benthic foraminifera was classified into a total of 48 genera and 104 species, including agglutinated foraminifera, calcareous-hyaline, and calcareous-porcelaneous foraminifera. The production rate of agglutinated foraminifera increased toward the Yangtze River area while that of planktonic foraminifera increased toward Jeju Island. Dominant species are Ammonia ketienziensis, Bolivina robusta, Eggella advena, Eilohedra nipponica, Pseudorotalia gamardii, Pseudoparrella naraensis. 14C radiocarbon datings of Bolivina robusta and Pseudorotalia gamardii with the highest production rate were 2,360±40 yr B.P. and 2,450±40 yr B.P., respectively. In the result of cluster analysis, three assemblages composed of P. gaimardii, B. robusta, and A. ketienziensis-P. naraensis were classified broadly. P. gaimardii assemblage is thought to be formed from about 2.5 yr B.P. at the sea area of the Yangtze River to 50 m in water depth affected by fresh water. B. robusta assemblage is thought to be formed from about 2.4 yr B.P. at the sea area of Jeju Island to 50~100 m affected by offshore water. And then, A. ketienziensisP. naraensis assemblage was formed in the northwest sea area (Central Yellow Sea Mud). These distributions and composition of benthic foraminiferal assemblages formed from about 2.5 yr B.P. in the northern East China Sea are thought to be due to the change of benthic ecology environment that occurred by the sea level increase during the late Holocene.

The Factors Influencing the Systemic Action of Dimethoate (O.O-dimethyl-S-(N-methylcarbamoylmethyl) phosphorodithioate) to the Rice Seeds and Phytotoxic Effects (수도종자에의 Dimethoate 침투력 및 발아저해에 관여하는 요인에 관한 연구)

  • Choi Seung Yoon
    • Korean journal of applied entomology
    • /
    • v.9 no.2
    • /
    • pp.57-74
    • /
    • 1970
  • These experiments were conducted to investigate the :actors influencing the systemic action of Dimethoate (O,O-dimethyl-S-(N-methylcarhamoylmethyl) photphorodithioate) to rice seeds and the phytotoxic effects on the seed germination. Dimethoate $(Roxion^{(R)})$ $40\%$ emulsion was used. The varieties tested were Jinheung. Nongkwang,Suwon #82, Norm #6, Paltal, Shirogane, Suseong, Pungkwang, Shin #2, Fujisaka #5, Kwanok, and Jaekeun. The permeated Dimethoate was extracted from the treated seeds by chloroform and quantities were determined by Spectrophotometer. The phytotoxicity was evaluated from the effects on the germination of the treated seeds which were kept in an incubator. The oxygen consumption was measured by Warburg Manometer at $30^{\circ}C$ for 60 minutes. Indices of KOH disintegration of seeds and chemical composition of the seeds were also determined. The results obtained were as followings; 1) The amount of permeated Dimethoate in the seeds showed remarkable differences with varieties. The amount of Dimethoate per 100 grains was greater as in the ascending order of Suseong, Kwanok, Nongkwang, Jinheung, Paltal, Fujisaka #5, Suwon #82, Norm #6, Shirogane, Shin #2, Pungkwang and Jaekeun. 2) It was observed that the total amount of Dimethoate in the seeds(mg./100 grains) were greater among the varieties with large grain than those with small grains, while reverse cases were true in the amount of Dimethoate in a gramme of seeds, probably because of the greater surface areas In a small grains for a gramme weight. 3) There was no significant correlation between the permeated amount of Dimethoate and amount of absorbed water by the seeds when the seeds were treated with $0.1\%$ Dimethoate for 24 and 48 hours. 4) The permeability of Dimethoate to seeds significantly increased in the prolonged soaking periods, higher concentration, and higher temperature. 5) When the seeds were treated with $0.1\%$ Dimethoate for 24 and 48 hours at $15^{\circ},\;20^{\circ},\; 20^{\circ},\; and \;30^{\circ}C$, the permeated amount of Dimethoate were increased at higher temperature. It seems to be that the more active penetration of Dimethoate was involved at the higher temperature. 6) The phytotoxic effects of Dinethoate on the seed germination varied with the varieties. An descending order of varietal tolerance of seeds was as followings: Jinheung, Fujisaka #5, Suwon #82, Paltal, Nongkwang, Jaekeun, Shin #2, Kwanok, Shirogane, Pungkwang, Suseong, and Norm #6. 7) There was a positive correlation between the amount of Dimethoate permeated into the seeds (mg./gram. of seeds) and phytotoxicity of seeds. 8) The Phytotoxic effects of Dimethoate showed close correlation with the degree of KOH disintegration of seeds, average germination periods, and oxygen respiration of seeds. 9) It was observed that higher protein contents of the seeds decreased the phytotoxic effects of Dimethoate. 10) Relatively high negative correlation between the degree of KOH disintegration of seeds and crude protein content of the seeds was observed. 11) The average germination period was delayed for about 2 days when the seeds were treated with $0.2\%$ Dimethoate for 24 hours at $30^{\circ}C$. 12) The oxygen consumption of the seeds treated with $0.2\%$ Dimethoate for 24 hours at $30^{\circ}C$ was greatly decreased when compared with that of the normal seeds. 13) The amount of oxygen consumption of the seeds (in 24 hours after 24 hours water soaking) was negatively correlated with the average germination periods of the seeds.

  • PDF