• Title/Summary/Keyword: grain bridging

Search Result 31, Processing Time 0.018 seconds

Influence of Electric Poling an Fracture Toughness of Ferroelectric-Ferroelastic PZT Ceramics

  • Zuokai Ke;Sunggi Baik
    • The Korean Journal of Ceramics
    • /
    • v.1 no.4
    • /
    • pp.197-203
    • /
    • 1995
  • Nearly fully dense PZT samples both with tetragonal and with morphotropic phase boundary compositions were prepared by the conventional powder processing and sintering. A micro-indentation technique was used to evaluate the dependence of fracture toughness on remanent polarization, crack length and the direction of crack propagation. The result shows that the toughness increases with the remanent polarization along the poling direction and decreases in the transverse direction. The dependence of toughness on the remanent polarization is neither symmetric nor linear but rather shown to be saturated quickly with the increase in remanent polariztion. R-curve behaviors are observed in both poled and unpoled samples. Sequential SEM and XRD studies on annealed, poled, ground, fractured and etched samples show that domain switching is evident as a viable toughening mechanism but might depend upon the rate of crack propagation. Grain bridging is also observed as one of the active toughening mechanisms.

  • PDF

Mechanical Properties of High Strength Cement Composite with Carbon Fiber (탄소섬유 보강 고강도 시멘트 복합체의 기게적 특성에 관한 연구)

  • 전용희;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.2
    • /
    • pp.139-147
    • /
    • 1993
  • Two sheets of high strength cement paste using ordinary Portland cement and water soluble polymer (polyacrylamide) were made by kneading with a twin roll mill. A carbon fiber layer out between two sheet of the cement paste, and then carbon fiber reinforced high strength cement composites were prepared by pressing them. The mechanical properties of the composites were investigated through the observation of the microstructure and the application of fracture mechanics. When the carbon fiber was added with 0.2 and 0.3wt% to the composites the flexural strength and Young's modulus were about 110∼116MPa and 74∼77GPa respectively, and critical stress intensity was about 3.14MPam1/2. It can be considered that the strength improvement of high strength cement fiber composites may be due to the removal of macropores and the increase of various fracture toughness effects; grain bridging, frictional interlocking, polymer fibril bridging and fiber bridging.

  • PDF

The effect of impact directions and angels on erosion behavior of undirectionally oriented sillicon nitride (충돌 방향과 각도가 일방적으로 배향된 질화규소의 Erosion 거동에 미치는 영향)

  • Cho, Chang-Hee;Choi, Hyun-Joo;Lim, Dae-Soon;Jung, Jung-Sik;Park, Dong-Soo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.88-95
    • /
    • 2001
  • Silicon nitride based ceramics reinforced with 3wt% Si$_{3}$N$_{4}$ whisker was prepared by tape casting to investigate the effect of microstructure on erosion behaviors. Hardness and fracture toughness were measured with prepared specimens. A gas blast type erosion tester was used to examine the erosion behavior of the specimens with different impact directions and angles. The erosion rate increases with increasing impact angle. Erosion rate of the silicon nitride ceramics also depends on the grain orientations, The erosion rate was lowered when impaction direction was parallel to the grain orientation This result was explained by the crack deflection and bridging due to the grain orientation.

  • PDF

Mechanical Properties of Cement Mortar with Polymers (폴리머 모르타르의 기계적 특성)

  • 정민철;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.745-752
    • /
    • 1994
  • A polymer reinforced grouts using ordinary portland cement mortar and water soluble polymer{polyvinyl alcohol(PVA), styrene-butadiene rubbre(SBR), etylene-vinyl acetate copolymer(EVA)} were made. The mechanical properties of the hardened specimens were investigated through the observation of the microstructure and application of fracture mechanics. When the PVA, SBR and EVA was added with 1.5 wt% to the grouts, the compressive strength were about 54 MPa, 63 MPa and 68 MPa respectively, and the flexural strength was about 11 MPa, 12.8 MPa, and 13.6 MPa respectively, and Young's modulus was about 3.8 GPa, 4.4 GPa and 4.6 GPa respectively, and critical stress intensity was about 0.73 MNm-1.5, 0.85 MNm-1.5 and 0.9 MNm-1.5 respectively. It can be considered that the strength improvement of polymer mortar grouts may be due to the removal of macropores and the increase of various fracture toughness effects, such as grain bridging, frictional interlocking and polymer bridging.

  • PDF

A Study on the Strength and Fracture Toughness of High Strength Hardened Cement Paste (고강도 시멘트 경화체의 강도 및 파괴인성에 관한 연구)

  • 김정환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.151-158
    • /
    • 1994
  • In this work, in order to inrprove the flexural strength of hardened portlarid cerncrit paste, mix ing water was reduced to water ccrnent ratio of 0.1 aid water soluble polymer such as hydroxy propyl methyl cellulose was adclelri to the paste to obtain a better dispersion. The paste was kneaded by the twin roll mill for cornpact and homogeneous mixing. The high strength mechanism of the hardened cement paste may be due to the removal of macropores larger than 100${\mu}m$, the reduction of capillary pores acting as the passage of crack propagation, the increase of Young's moculus with iticrease of unhytlratcci cenxxnt ard the incicasc of fracture toughnevs with the crack toughening mechanism (grain bridging, polymer fibril bridging and fritional inter-locking).

Fabrication and Fracture Properties of Alumina Matrix Composites Reinforced with Carbon Nanotubes (Carbon Nanotube로 강화된 알루미나 기지 복합재료의 제조 및 파괴특성)

  • Kim, Sung Wan;Chung, Won Sub;Sohn, Kee-Sun;Son, Chang-Young;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.50-58
    • /
    • 2009
  • In this study, alumina matrix composites reinforced with carbon nanotubes (CNTs) were fabricated by ultrasonic dispersion, ball milling, mixing, compaction, and sintering processes, and their relative density, electrical resistance, hardness, flexure strength, and fracture toughness were evaluated. 0~3 vol.% of CNTs were relatively homogeneously dispersed in the composites in spite of the existence of some pores. The three-point bending test results indicated that the flexure strength increased with increasing volume fraction of CNTs, and reached the maximum when the CNT fraction was 1.5 vol.%. The fracture toughness increased as the CNT fraction increased, and the fracture toughness of the composite containing 3 vol.% of CNTs was higher by 40% than that of the monolithic alumina. According to observation of the crack propagation path after the indentation fracture test, a new toughening mechanism of grain interface bridging-induced CNT bridging was suggested to explain the improvement of fracture toughness in the alumina matrix composites reinforced with CNTs.

Fracture Toughness and Crack Growth Resistance of the Fine Grain Isotropic Graphite

  • Kim, Dae-Jong;Oh, Seung-Jin;Jang, Chang-Heui;Kim, In-Sup;Chi, Se-Hwan
    • Carbon letters
    • /
    • v.7 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • Three point bending tests of single edge notched beam (SENB) specimens were carried out to evaluate the fracture behavior of the fine-grain isotropic nuclear grade graphite, IG-11. To measure the crack initiation point and the subsequent crack growth, the direct current potential drop (DCPD) method and a traveling microscope were used. The effects of test variables like initial crack length, specimen thickness, notch type and loading rate on the measured fracture toughness, $K_Q$, were investigated. Based on the test results, the ranges of the test variables to measure the reliable fracture toughness value were proposed. During the crack growth, the rising R-curve behavior was observed in IG-11 graphite when the superficial crack length measured on the specimen surface was used. The increase of crack growth resistance was discussed in terms of crack bridging, crack meandering, crack branching, microcracking and crack deflection, which increase the surface energy and friction force.

  • PDF

The Effect of Water Soluble Polymer on the Flexural Strength and Moisture Sensitivity in MDF Cement Composites (MDF 시멘트 복합재료의 휨강도와 수분민강성에 미치는 수용성 폴리머의 영향)

  • 김태현;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.4
    • /
    • pp.298-304
    • /
    • 1992
  • Flexural strength, microstructure, hydration reaction and moisture sensitivity in macro defect-free (MDF) cement, which basically prepared of high alumina cement (HAC) and hydroxypropyl methylcellulose (HPMC) and polyvinylalcohol (PVA) as water soluble polymer were investigated. Cement composites based on HAC-PVA system were improved in flexural strength than that of HAC-HPMC system especially, the strength of specimens added to 10 wt% of polyvinylalcohol was 160 MPa. These improvements of flexural strength were attributed to not only the effect of water soluble polymer in elimination of macropores (above 100 $\mu\textrm{m}$) and cement grain bridging, but the effect of unhydrate cement as an aggregate. Moisture sensitivity and flexural strength in wet condition of MDF cement composites immersed in water at 80$^{\circ}C$ for 3 days were decreased.

  • PDF

Preparation and Mechanical Properties of $Al_2O_3$/5vo1%Cu Nanocomposites ($Al_2O_3$/5vo1%Cu 나노복합재료의 제조 및 기계적특성)

  • ;;Koichi Niihara
    • Journal of Powder Materials
    • /
    • v.7 no.4
    • /
    • pp.212-217
    • /
    • 2000
  • An optimum route to fabricate the $Al_2O_3/Cu$ nanocomposites with sound microstructure and improved mechanical properties was investigated. Microstructural investigations for the composites prepared using $Al_2O_3/Cu$-nitrate showed that fine Cu particles with average size of 150 nm were homogeneously distributed within the $Al_2O_3$ matrix grains and at the grain boundaries. Fracture strength of 953 MPa and toughness of 4.8 Mpa(equation omitted)m were measured for the composite. The strengthening and toughening of the composites are explained by the refinement of the microstructure and the crack bridging/deflection, respectively.

  • PDF

Formation of La-$\beta$-Aluminate in $\alpha$-Alumina Matrix and Its Influence on Mechanical Properties (La-$\beta$-Aluminate의 형성이 $\alpha$-Alumina의 기계적 성질에 미치는 영향)

  • 강석원;고재웅;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.23-28
    • /
    • 1992
  • Alumina ceramics was reinforced by in-situ formation of La-${\beta}$-aluminate in ${\alpha}$-alumina matrix. The powder mixture of which composition is (100-12x)Al2O3+x(La2O3+11Al2O3) was prepared for the formation of La-${\beta}$-aluminate in ${\alpha}$-alumina matrix. The amount of La-${\beta}$-aluminate in the matrix was controlled by varing x which is number of moles. The dense composite was produced by sintering at 1600$^{\circ}C$ in air or hot-pressing at 1550$^{\circ}C$ under 30 MPa. Bending strength and fracture toughness were increased, resulting from the grain growth inhibition and the crack deflection and crack bridging mechanism when La-${\beta}$-aluminate was produced in ${\alpha}$-alumina matrix.

  • PDF