• Title/Summary/Keyword: grafting-from polymerization

Search Result 49, Processing Time 0.026 seconds

The Graft Polymerization of Acrylic Acid in Vapour Phase onto Poly(ethylene terephthalate) by Cold Plasma Part (I) (저온 Plasma를 이용한 Poly(ethylene terephthalate)에의 Acrylic Acid의 기상 Graft 공중합 반응(I))

  • 천태일;최석철;모상영
    • Textile Coloration and Finishing
    • /
    • v.1 no.1
    • /
    • pp.7-18
    • /
    • 1989
  • The distinguishing characteristic of the glow discharge is that chemical reaction induced by partially ionized gases are limited only to the substrate surface. Most studies have been done on the plasma etching and polymerization. The graft polymerization in vapour phase by cold plasma has been rarely investigated. In this study the system of tub3ar reaction chamber with capacitively coupled electrode of alternative current of 60 Hz was employed for the graft polymerization. The graft polymerization of Acylic Acid(AA) onto the poly (ethylene terephthalate) (PET) was carried out by treatment of PET film and fabric by cold plasma (glow discharge of argon gas), followed by the supply of AA vapour. The graft yield was about 1 wt%. The surface property was determined by contact angle, the surface tension was evaluated by zisman’s plot and equation of surface tension mesurement. The results were as follows: 1. In order to obtain lower contact angle, it was effective to avoid the vicinity of electrodes for a setting position of substrate. 2. Contact angle affected on the monomer pressure and its duration of exposure to the acid vapour. 3. Polymer radical formation was influenced by the changes of the value of current density and plasma treatment time. 4. Total surface tension of plasma grafted PET film increased. With an increase in the carboxylic acid content, the dispersion force decreased, while, the polar force and hydrogen bonding force increased. 5. The contact angle decreased from $75^\circ$ to around $30^\circ$ by plasma grafting. There was no ageing effect on the contact angle after 4 months.

  • PDF

Heavy Metal Removal of Acrylic Acid-grafted Bacterial Cellulose in Aqueous Solution (아크릴산으로 그라프트된 미생물셀룰로오스의 수용액 내 중금속 흡착거동)

  • Ahn, Yeong-Hee;Choi, Yong-Jin
    • Journal of Environmental Science International
    • /
    • v.23 no.8
    • /
    • pp.1419-1428
    • /
    • 2014
  • Electron beam-induced grafting polymerization was employed to prepare Acrylic acid-grafted bacterial cellulose (BC-g-AAc). BC-g-AAc as an adsorbent was applied to remove heavy metals (e.g., As, Pb, and Cd). This study examined followings; morphological change of surface, adsorptive behavior of BC-g-AAc, and interpretation of adsorptive kinetics. Specific surface areas of BC and BC-g-AAc were $0.9527m^2g^{-1}$ for BC and $0.2272m^2g^{-1}$ for BC-g-AAc, respectively as measured by BET nitrogen adsorption, revealing the morphological change of the surface of BC-g-AAc. Batch adsorption test was performed to investigate adsorptive behavior of BC-g-AAc in aqueous solution. The amounts of Pb and Cd adsorbed on BC-g-AAc were $69mg\;g^{-1}$ and $56mg\;g^{-1}$, respectively. However, As was not adsorbed on BC-g-AAc due to its neutral nature. Both the Benaissa model and the Kurniawan model were applied in the study to interpret adsorptive kinetics. From the value of correction coefficient ($R^2$), adsorptive kinetics of Pb and Cd were subjected to Kurniawan model referred to pseudo-second-order. Taken together, the results of this study show that BC-g-AAc has potential as a heavy metal (eg., Pb, Cd)-adsorbent made of an environmentally friendly material.

Preparation of Poly(vinylidene fluoride)-g-poly(methacrylic acid) Composite Nanofiltration Membrane

  • Kim, Yong-Woo;Choi, Jin-Kyu;Koh, Joo-Hwan;Kim, Jong-Hak
    • Korean Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.57-63
    • /
    • 2007
  • Amphiphilic graft copolymer from poly(vinylidene fluoride) (PVDF) was synthesized using atom transfer radical polymerization (ATRP) for composite nanofiltration membranes. Direct initiation of the secondary fluorinated site of PVDF facilitates grafting of tert-butyl methacrylate (tBMA). Amphiphilic PVDF-g-PMAA graft copolymer with a 51:49 wt ratio was obtained by hydrolyzing poly(tert-butyl methacrylate) (PtBMA) to poly(methacrylic acid) (PMAA). Wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) confirmed the decrease of crystallinity of PVDF upon graft copolymerization. Composite nanofiltration membranes were prepared from PVDF-g-PMAA as a top layer coated onto PVDF ultrafiltration (UF) support membrane. The morphology and hydrophilicity of membranes were characterized using scanning electron microscopy (SEM) and contact angle measurement. The rejections of composite membranes were 80.2% for $Na_2SO_4$ and 28.4% for NaCl, and the solution flux were 9.5 and $14.5\;L/m^2\;h$ at 1.0 MPa pressure.

Synthesis and Characterization of Proton Conducting Graft Copolymer Membranes (수소이온 전도성 가지형 공중합체 전해질막 제조 및 분석)

  • Roh, Dong Kyu;Koh, Jong Kwan;Seo, Jin Ah;Kim, Jong Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.126.2-126.2
    • /
    • 2010
  • The "grafting from" technology to prepare the well-defined microphase-separated structure of polymer using atom transfer radical polymerization (ATRP) will be introduced in this presentation. Various amphiphilic comb copolymers were synthesized through this approach using poly (vinylidene fluoride) (PVDF), poly (vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-co-CTFE) and poly(vinyl chloride) (PVC) as a macroinitiator. Hydrophilic side chains such as poly (styrene sulfonic acid) (PSSA) or poly (sulfopropyl methacrylate) (PSPMA) were grafted from the mains chains using direct initiation of the chlorine atoms. The structure of mass transport channels has been controlled and fixed by crosslinking the hydrophobic domains, which also provides the greater mechanical properties of membranes. Successful synthesis and microphase-separated structure of the polymer were confirmed by $^1H$ NMR, FT-IR spectroscopy and TEM. The grafted/crosslinked membranes exhibited good mechanical properties (400 MPa of Young's modulus) and high thermal stability (up to $300^{\circ}C$), as determined by a universal testing machine (UTM) and TGA, respectively.

  • PDF

Grafting of Performed Polyacrylonitrile onto Cellulose Acetate (Polyacrylonitrile과 셀룰로오스 아세테이트의 그라프팅에 관한 연구)

  • 이명구;원종명
    • Journal of Korea Foresty Energy
    • /
    • v.17 no.1
    • /
    • pp.30-35
    • /
    • 1998
  • The cellulose modification can be made in steps, giving a range of new products having properties quite different from the parent cellulose. Effective molecular weight control and narrow molecular weight distribution of the polyacrylonitrile can be accomplished by anionic polymerization technique. Preformed polyacrylonitrile was grafted precisely onto cellulose acetate by SN$_2$ reaction mechanism in a simple and effective way under homogeneous reaction condition. The 3.5g of completely dried cellulose acetate(DS=2.4) dissolved in 50ml of dry THF was transferred to the 215m1 polyacrylonitrile solution. The mixture was stirred vigorously under nitrogen atmosphere for 2 hrs. FTIR spectra of cellulose acetate and grafted cellulose acetate were taken, and their characteristic bands were identified.

  • PDF

Characteristics with Casting Molding of Functional EPDM Through Grafting Polymerization

  • Yoon, Yoo Mi;Kim, Donghyun;Kim, Jeong Hoe;Kim, Minseub;Lee, Won Ki;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.194-200
    • /
    • 2017
  • After the grafting of methacrylic acid (MA) to ethylene propylene diene monomer (EPDM), a new peak at $1704cm^{-1}$ corresponding to the carboxylic acid group was observed in the infrared (IR) spectrum. This characteristic MA molecule peak grew larger as the MA contents were increased. After casting films were prepared from pure EPDM and MA-grafted EPDM, differential scanning calorimeter (DSC) measurements were made the pure EPDM exhibited a melting point of approximately $45^{\circ}C$ while that of the MA-grafted EPDM was $135{\sim}140^{\circ}C$. As the graft ratio of MA increased, the absorbed heat capacity increased at temperatures near $135{\sim}140^{\circ}C$, indicating that an increased amount of MA reacted. Furthermore, owing to the addition of crystalline MA, it is expected that strength of the elastomer will improve as the graft ratio increases, as a result of the increased number of hard segments.

Preparation of Porous TiO2 Thin Films by Poly(vinyl chloride)-graft-poly(N-vinyl pyrrolidone) and Their Applications to Dye-sensitized Solar Cells

  • Yeon, Seung-Hyeon;Patel, Rajkumar;Koh, Jong-Kwan;Ahn, Sung-Hoon;Kim, Jong-Hak
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.83-91
    • /
    • 2011
  • Mesoporous titanium dioxide ($TiO_2$) thin films were prepared using poly(vinyl chloride)-graft-poly(N-vinyl pyrrolidone) (PVC-g-PVP) as a templating agent via sol-gel process. Grafting of PVC chains from PVC backbone was done by atom transfer radical polymerization (ATRP) technique. The successful grafting of PVP to synthesize PVC-g-PVP was checked by fourier-transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). The carbonyl group interaction of PVC-g-PVP graft copolymer with $TiO_2$ was confirmed by FT-IR. The porous morphologies of the $TiO_2$ films genereated after calcination at $450^{\circ}C$ was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mesoporous $TiO_2$ films with 580 nm in thickness were used as a photoelectrode for solid state dye sensitized solar cell (DSSC) and showed an energy conversion efficiency of 1.05% at 100 $mW/cm^2$.

Synthesis of Multi Hydroxyl Chain-End Functionalized Polyolefin Elastomer with Poly(t-butylstyrene) Graft (Poly(t-butylstyrene) 그라프트를 가지는 수산기 말단 관능화 폴리올레핀 탄성체의 합성)

  • Lee, Hyoung Woo;Cho, Hee Won;Lee, Sang Min;Park, Sat Byeol;Kim, Dong Hyun;Lee, Bum Jae
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.10-17
    • /
    • 2013
  • Polyolefin-g-poly(t-butylstyrene) as one of the high-temperature polyolefin-based thermoplastic elastomers was synthesized by the graft-from anionic living polymerization from the styrene moieties of the linear poly(ethylene-ter-1-hexene-ter-divinylbenzene) as a soft block to form the hard end blocks, poly(t-butylstyrene). The chemistry of the anionic graft-from polymerization involved complete lithiation of the pendant styrene unit of the soft polyolefin elastomer with sec-BuLi/TMEDA followed by the subsequent graft anionic polymerization of 4-tert-butylstyrene with Mn=10,000~30,000 g/mol. The graft-from living anionic polymerization were very effective and the grafting size increased proportionally with increasing monomer concentration and the reaction times. The synthetic methodology for the multi-hydroxyl chain-end modified polyolefin-g-poly(t-butylstyrene) was proposed by using the thiol-ene click reaction between 2-mercaptoethanol and the polyolefin-g-[poly(t-butylstyrene)-b-high vinyl polyisoprene], which was obtained from the subsequent living block copolymerization using polyolefin-g-Poly(t-butylstyrene) with isoprene. The result indicated that this process produced a new well-defined functionalized graft-type polyolefin-based TPE with high $T_g$ hard block(> $145^{\circ}C$).

Effects of Methacrylamide Treatment on Silk Fibers III. Polymerization Behavior of Methacrylamide (견섬유에 대한 메타크릴아미드의 처리효과 III. 메타크릴아미드의 중합거동)

  • 신봉섭;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.34 no.2
    • /
    • pp.32-40
    • /
    • 1992
  • Many studies have been carried out on the graft finishing in order to improve the quality of silk fiber. Various vinyl monomers, for instance, styrene, methylmethacrylate, 2-hydroxyeth-ylmethacrylate and methacrylamide, have been used practically up to date. Among these monomers, methacrylamide has been applied as the most favourable monomer onto silk fibers in recent years. The polymerization mechanism about styrene- and methylmethacrylate-grafted silk fiber has been studied by many researchers. They proposed that free radicals were formed and vinyl monomers were polymerized in silk fibroin by graft polymerization mechanism, while active sites were varied by the types of monomer and initiator as well as by the reaction condition. In general. there is another Opinion that monomers are polymerized and impregnated in the internal side of the fiber by homopolymerization, which has not been proved experimentally yet More than 10 years have been passed since methacrylamide was applied on the silk fiber, and at the present time most finishings are being achieved by methacrylamide. However, no attention has been paid to the polymerization mechanism of the methacrylamide-treated silk fiber yeL In this paper, the treatments of methacrylamide on silk fibers were studied in aqueous solution using potassium persulfate as an initiator. The polymerization mechanism of the methacrylamide-treated silk fibers was investigated and analyzed on the basis of the results of infrared spectroscopy, amino acid analysis and scanning electron microscopy. From the results of these instrumental analyses, it can be suggested that polymerization mechanism about the methacrylamide-treated silk fibers is not performed by graft polymerization which has been accepted generally in styrene and methylmethacrylate-grafted silk fibers. The different mechanism is supposed to be due to the difference in monomer types, initiator types and treatment conditions.

  • PDF

Synthesis of Sulfonated Hollow PP-g-Styrene Fibrous Ion-exchange Membrane and Separation of BSA Protein (술폰화 PP-g-Styrene 중공사 이온교환막의 합성과 BSA 단백질 분리에 관한 연구)

  • 황택성;이진혁
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.415-421
    • /
    • 2002
  • A sulfonated PP-g-styrene ion-exchange hollow fiber membrane was prepared by pre-irradiation method with E-beam followed by sulfonation reaction. Degree of grafting increased with the increase of styrene monomer concentration and showed the maximum value of 128% at 80% of styrene monomer composition. Sulfonation yield increased with the degree of grafting. At 100% degree of grafting, sulfonation yield showed the maximum value of 13.4%. Ion exchange capacity of sulfonated HPP-g-styrene of 3.42 meq/g was attained, resulting in the remarkable increase of adsorption ability BET analysis proved that the surface area of sulfonated HPP-g-styrene was 62.54 $m^2/g$ and the mean pore size was 25 $\AA$. From the BSA adsorption experiments, the adsorption amount of BSA was increased with sulfonation. At 13.4% sulfonation yield the adsorption amount of BSA was maximum as 3.8 mg/g. Sulfonated HPP-g-styrene was synthesized successfully and suitable for the adsorption and separation of BSA.