• Title/Summary/Keyword: grafted seedlings

Search Result 73, Processing Time 0.022 seconds

Mean Size of Droplets Ejected from Humidifier and Distributions of Relative Humidity As Affected by Different Humidifying Methods in Graft-taking Enhancement System (가습 방식에 따른 가습입자의 평균 입경 및 활착촉진 시스템 내의 상대습도 분포)

  • 박현수;최유화;김용현
    • Journal of Bio-Environment Control
    • /
    • v.12 no.1
    • /
    • pp.12-16
    • /
    • 2003
  • The effect of humidifying methods on the mean size of droplets ejected from humidifier and distributions of relative humidity in a graft-taking enhancement system (GTES) was investigated. The mean sizes of droplets ejected from an ultrasonic humidifier and a steam humidifier with electrodes were 7.58$\pm$0.14 and 9.01$\pm$0.06 $\mu$m, respectively. Assuming that the particles ejected from humidifiers were mutually combined with distance, the mean diameter of droplets became larger as the distance apart from the outlet of humidifiers increased. When the relative humidity in GRS was controlled at 90% using the ultrasonic humidifiers, the average relative humidity at the height of 0.4, 1.1 and 1.8 m were 92.1$\pm$5.3, 90.9$\pm$5.6, and 89.7$\pm$6.8%, respectively. However, the average relative humidity using the steam humidifier with electrodes showed 93.4 $\pm$5.4, 90.7$\pm$5.9, and 89.3$\pm$7.0%, respectively. Therefore, it was concluded that humidification by ultrasonic humidifier would be appropriate for the uniform distribution of relative humidity in GTES.

Virus Disease Incidences and Transmission Ecology of Oriental Melons in Seongju Area (성주지역 참외 바이러스병의 발생실태와 전염생태)

  • Park, Seok-Jin;Lee, Joong-Hwan;Nam, Moon;Park, Chung-Youl;Kim, Jeong-Seon;Lee, Joo-Hee;Jun, Eun-Suk;Lee, Jun-Seong;Choi, Hong-Soo;Kim, Jeong-Soo;Moon, Jae-Sun;Kim, Hong-Gi;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.342-350
    • /
    • 2011
  • Throughout the years 2008 to 2010, we analyzed approximately two thousand oriental melon samples collected from Seongju, using electron microscopy and testing by RT-PCR using primers specific for eight cucurbit-infecting viruses. Data from RT-PCR indicated that Cucumber green mottle mosaic virus (CGMMV), Watermelon mosaic virus 2 (WMV2) and Zucchini yellow mosaic virus (ZYMV) were present and the other viruses were not detected. Among them, CGMMV and WMV2 were the most prevalent pathogens. CGMMV was thought to infect oriental melon from the early growing season, and reached nearly 100% in the later of growing period. Otherwise, WMV2 emerged from June, several months later compared to CGMMV. CGMMV was detected from all aerial parts of the oriental melon including seeds, but not from the roots of the grafted pumpkin rootstock. Seed of two out of five commercial varieties were shown to be CGMMV positive. Nine varieties of pumpkins used as rootstocks were not infected with CGMMV. When the seedlings of grafted oriental melon were transplanted into pots mixed with the oriental melon debris infected with CGMMV, they were not infected by CGMMV. Cutting of pruning shear and the contact of tendrils contributed 48% and 30% to the transmission of the virus, respectively.

Effect of Shading and Supplemental Lighting for Greenhouse Cultivation of Cucumber in Summer Season (하절기 오이 온실재배 시 차광 및 보광 효과)

  • Jin Yu;Ji Hye Yun;So Yeong Hwang;Eun Won Park;Jeong Hun Hwang;Hyeong Eun Choi;Jeong Kil Koo;Hee Sung Hwang;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.226-233
    • /
    • 2023
  • High solar radiation in summer season causes excessive respiration of crops and reduces photosynthesis. In addition, the rainy season, which mainly occurs in summer, causes a low light condition inside the greenhouse. A low light condition can reduce crop growth and yield. This study was conducted to evaluate the effect of shade and supplemental lighting on the growth and yield of cucumber during summer season. Cucumber grafted seedlings were transplanted in two plastic greenhouses on August 30, 2022. To reduce the light intensity inside the greenhouse, a 50% shading screen was installed in one greenhouse. Supplemental lighting was conducted from September 7, 2022 to October 20, 2022. HPS (high-pressure sodium lamp), W LED (white LED, red:green:blue = 5:3:2), and RB LED (combined red and blue LED, red:blue = 7:3) were used for supplemental lighting sources, and non-treated (nonsupplemental lighting) was as the control. The supplemental lighting was conducted before sunrise and after sunset for 2 hours with a photosynthetic photon flux density of 150 ± 20 µmol·m-2·s-1. The plant height, leaf length, leaf width, and SPAD value tended to increase in the shading group. RB LED increased stem diameter regardless of shading treatment. Fresh and dry weights of fruits were not significantly different in shading and supplemental lighting. Average fresh weight of fruits was not significantly different among supplemental lighting as the harvest date passed. In conclusion, in this study 50% shade treatment significantly improved the growth of cucumber during the summer season. In addition, the growth and fruit characteristics are better than the control without supplemental lighting. This study can be used as basic research data for applying supplemental lighting technology to cucumber cultivation.