• Title/Summary/Keyword: gradient technique

Search Result 709, Processing Time 0.025 seconds

The Theory and Application of Diffusive Gradient in Thin Film Probe for the Evaluation of Concentration and Bioavailability of Inorganic Contaminants in Aquatic Environments (박막분산탐침(diffusive gradient in thin film probe)의 수중 생물학적 이용가능한 중금속 측정 적용)

  • Hong, Yongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.691-702
    • /
    • 2013
  • This review paper summarizes the theory, application, and potential drawbacks of diffusive gradient in thin film (DGT) probe which is a widely used in-situ passive sampling technique for monitoring inorganic contaminants in aquatic environments. The DGT probe employs a series of layers including a filter membrane, a diffusive hydrogel, and an ionic exchange resin gel in a plastic unit. The filter side is exposed to an aquatic environment after which dissolved inorganic contaminants, such as heavy metals and nuclides, diffuse through the hydrogel and are accumulated in the resin gel. After retrieval, the contaminants in the resin gel are extracted by strong acid or base and the concentrations are determined by analytical instruments. Then aqueous concentrations of the inorganic contaminants can be estimated from a mathematical equation. The DGT has also been used to monitor nutrients, such as ${PO_4}^{3-}$, in lakes, streams, and estuaries, which might be helpful in assessing eutrophic potential in aquatic environments. DGT is a robust in-situ passive sampling techniques for investigating bioavailability, toxicity, and speciation of inorganic contaminants in aquatic environments, and can be an effective monitoring tool for risk assessment.

Investigation of thermal deformation of wing skin induced by temperature gradient (온도 구배에 의한 날개 외피의 열변형 특성 연구)

  • Kim, Jeong-Beom;Kim, Hong-Il;Kim, Jae-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.896-901
    • /
    • 2015
  • The skin-frame type structure is designed to investigate the thermal deformation of the wing skin induced by the temperature gradient. In order to effectively simulate the temperature gradient on the wing specimen, a water cooling system is devised on the frame of the specimen. Out of surface skin deformation of the skin-frame type structure made of SUS304 material with respect to the temperature is successfully measured using the digital image correlation (DIC) technique including quantitative evaluation of the measurement uncertainty.

Assessment of The Accuracy of The MR Abdominal Adipose Tissue Volumetry using 3D Gradient Dual Echo 2-Point DIXON Technique using CT as Reference

  • Kang, Sung-Jin
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.603-615
    • /
    • 2016
  • In this study, in order to determine the validity and accuracy of MR imaging of 3D gradient dual echo 2-point DIXON technique for measuring abdominal adipose tissue volume and distribution, the measurements obtained by CT were set as a reference for comparison and their correlations were evaluated. CT and MRI scans were performed on each subject (17 healthy male volunteers who were fully informed about this study) to measure abdominal adipose tissue volume. Two skilled investigators individually observed the images acquired by CT and MRI in an independent environment, and directly separated the total volume using region-based thresholding segmentation method, and based on this, the total adipose tissue volume, subcutaneous adipose tissue volume and visceral adipose tissue volume were respectively measured. The correlation of the adipose tissue volume measurements with respect to the observer was examined using the Spearman test and the inter-observer agreement was evaluated using the intra-class correlation test. The correlation of the adipose tissue volume measurements by CT and MRI imaging methods was examined by simple regression analysis. In addition, using the Bland-Altman plot, the degree of agreement between the two imaging methods was evaluated. All of the statistical analysis results showed highly statistically significant correlation (p<0.05) respectively from the results of each adipose tissue volume measurements. In conclusion, MR abdominal adipose volumetry using the technique of 3D gradient dual echo 2-point DIXON showed a very high level of concordance even when compared with the adipose tissue measuring method using CT as reference.

Cardiac MRI (심장 자기공명영상)

  • Lee, Jong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • The obstacles for cardiac imaging are motion artifacts due to cardiac motion, respiration, and blood flow, and low signal due to small tissue volume of heart. To overcome these obstacles, fast imaging technique with ECG gating is utilized. Cardiac exam using MRI comprises of morphology, ventricular function, myocardial perfusion, metabolism, and coronary artery morphology. During cardiac morphology evaluation, double and triple inversion recovery techniques are used to depict myocardial fluidity and soft tissue structure such as fat tissue, respectively. By checking the first-pass enhancement of myocardium using contrast-enhanced fast gradient echo technique, myocardial blood flow can be evaluated. In addition, delayed imaging in 10 - 15 minutes can inform myocardial destruction such as chronic myocardial infarction. Ventricular function including regional and global wall motion can be checked by fast gradient echo cine imaging in quantitative way. MRI is acknowledged to be practical for integrated cardiac evaluation technique except coronary angiography. Especially delay imaging is the greatest merit of MRI in myocardial viability evaluation.

  • PDF

Fast MR Imaging Technique by Using Locally-Linear Gradient Field (부분적인 경사자계를 이용한 고속 자기공명 영상촬영기법)

  • 양윤정;이종권
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.93-98
    • /
    • 1996
  • The purpose of this paper is to propose a new localized imaging method of reduced imaging time luting a locally-linear gradient. Since most fast MR(Magnetic Resonance) imaging methods need the whole $\kappa$-space(Spatial frequency space) data corresponding to the whole imaging area, there are limitstions in reducing the minimum imaging time. The imaging method proposed in this paper uses a specially-made gradient coil generating a local ramp-shape field and uniform field outside of the imaging areal Conventional imaging sequences can be used without any RF/gradient pulse sequence modifiestions except the change in the number of encoding steps and the field of view.

  • PDF

Finite-Volume Model for Shallow-Water Flow over Uneven Bottom (고르지 않은 바닥을 지나는 천수 흐름에 대한 유한체적 모형)

  • Hwang, Seung-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.2
    • /
    • pp.139-153
    • /
    • 2013
  • For analyzing shallow-water flows over the uneven bottom, the HLLL scheme and the divergence form for bed slope source term (DFB) technique, respectively were applied to the flux gradient and the bottom gradient source terms in a finite-volume model for the shallow water equations. And also the model incorporated the volume/free-surface relationship (VFR) to consider the partially submerged cells (PSC). It was identified that a simpler version of the weighted surface-depth gradient method in the MUSCL was equivalent to the original one in the accuracy for 1D steady flows. It was verified that the flux gradient term and the bottom gradient source term were well-balanced exactly by the VFR for the 1D PSC. The VFR for the triangular PSC settled the problem which the governing equations were not well-balanced by the DFB technique for the 2D PSC. There were good agreements in simulations and experiments for 2D dam-break flows over a triangular sill and a round bump. In addition, the partial dam-break flow was successfully simulated for flooding of roughnesses in an irregular bottom as well as a sloping one. Therefore, this model is expected to be applied to the real river with uneven topography.

Detection of Mutated DNA Fragment by the Heteroduplex Analysis at the Temperature Gradient Gel (온도 기울기(temperature gradient) 젤에서 Heteroduplex Analysis 기법을 이용한 돌연변이 DNA의 검출)

  • 조용석;구미자;박귀근;박영서;강종백
    • Environmental Mutagens and Carcinogens
    • /
    • v.18 no.2
    • /
    • pp.83-88
    • /
    • 1998
  • To detect the mutation in a given sequence, there are variety of methods developed by use of the gel electrophoresis. One of the methods, TGGE (Temperature Gradient Gel Electrophoresis), is a popular technique because it can detect mutations in DNA fragment with ease and at low cost. This study used 200 bp BamHI-digested DNA fragment containing the human $\varepsilon$-globin promoter which was mutated[$\varepsilon$ F1*(-141), GATA- I*(-163), and GATA-1* & $\varepsilon$F1]. This BamHI-digested DNA fragment was directly used to detect the mutated DNA fragment on 50% denaturant gel with temperature gradient of 45$^{\circ}C$ through $53^{\circ}C$. In agreement with the theoretical result of MELTSCAN program (Brossette and Wallet, 1994) the mobilities of mutated DNA fragments were shown to be nearly distinguished on the temperature gradient gel. In contrast to the above result the heteroduplex analysis under the temperature gradient condition was shown to detect the mutated DNA fragments through the heteroduplex formation between strands of mutated DNA and wild-type DNA.

  • PDF

Optimization Inverse Design Technique for Fluid Machinery Impellers (유체기계 임펠러의 최적 역설계 기법)

  • Kim J. S.;Park W. G.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.37-45
    • /
    • 1998
  • A new and efficient inverse design method based on the numerical optimization technique has been developed. The 2-D incompressible Navier-Stokes equations are solved for obtaining the objective functions and coupled with the optimization procedure to perform the inverse design. The steepest descent and the conjugate gradient method have been applied to find the searching direction. The golden section method was applied to compute the design variable intervals. It has been found that the airfoil and the pump impellers are well converged to their targeting shapes.

  • PDF

An image Analysis Technique Using Integral Projections in Object-Oriented Analysis-Synthesis Coding (물체지향 분석 및 합성 부호화에서 가산 투영을 이용한 영상분석기법)

  • 김준석;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.87-98
    • /
    • 1994
  • Object-oriented analysis-synthesis coding subdivides each image of a sequence into moving objects and compensates the motion of each object. Thus it can reconstruct real motion better than conventional motion-compensated coding techniques at very-low-bit-rates. It uses a mapping parameter technique for estimating motion information of each object. Since a mapping parameter technique uses gradient operators it is sensitive to redundant details and noise. To accurately determine mapping parameters, we propose a new analysis method using integral projections for estimation of gradient values. Also to reconstruct correctly the local motion the proposed algorithm divides an image into segmented objects each of which having uniform motion information while the conventional one assumes a large object having the same motion information. Computer simulation results with several test sequences show that the proposed image analysis method in object-oriented analysis-synthesis coding shows better performance than the conventional one.

  • PDF

Optical Misalignment Cancellation via Online L1 Optimization (온라인 L1 최적화를 통한 탐색기 비정렬 효과 제거 기법)

  • Kim, Jong-Han;Han, Yudeog;Whang, Ick Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1078-1082
    • /
    • 2017
  • This paper presents an L1 optimization based filtering technique which effectively eliminates the optical misalignment effects encountered in the squint guidance mode with strapdown seekers. We formulated a series of L1 optimization problems in order to separate the bias and the gradient components from the measured data, and solved them via the alternating direction method of multipliers (ADMM) and sparse matrix decomposition techniques. The proposed technique was able to rapidly detect arbitrary discontinuities and gradient changes from the measured signals, and was shown to effectively cancel the undesirable effects coming from the seeker misalignment angles. The technique was implemented on embedded flight computers and the real-time operational performance was verified via the hardware-in-the-loop simulation (HILS) tests in parallel with the automatic target recognition algorithms and the intra-red synthetic target images.