• Title/Summary/Keyword: gradient structure

Search Result 819, Processing Time 0.025 seconds

Design of Variable Structure Controller with Time Varying Switching Surface (시변 스위칭 면을 갖는 기변구조 제어기의 설계)

  • Lee, Min-Jung;Kim, Hyun-Sik;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.471-473
    • /
    • 1997
  • In this paper, We propose a variable structure controller with time varying switching surface. We calculate the maximum value of switching surface gradient under the bound of input. To enhance the robustness, we, choose a time varying switching surface gradient that is of the 3rd order polynominal form. We use evolution strategy to optimize the parameters of the switching surface gradient. Finally, the proposed method is applied to the motor position control. Simulation results show that the proposed method is more useful than the conventional variable structure controller.

  • PDF

Effects of Secondary Flow on the Turbulence Structure of a Flat Plate Wake (2차유동이 평판후류의 난류구조에 미치는 영향)

  • Kim, Hyeong Soo;Lee, Joon Sik;Kang, Shin Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1073-1084
    • /
    • 1999
  • The effects of secondary flow on the structure of a turbulent wake generated by a flat plate was investigated experimentally. The secondary flow was induced In a $90^{\circ}$ curved duct in which the flat plate wake generator was installed. The wake generator was installed in such a way that the wake velocity gradient exists in the span wise direction of the curved duct. Measurements were made in the plane containing the mean radius of curvature where pressure gradient and curvature effects were small compared with the secondary flow effect. All six components of the Reynolds stresses were measured in the curved duct. Turbulence intensities in the curved wake are higher than those in the straight wake due to an increase of the turbulent kinetic energy production by the secondary flow. In the inner wake region, shear stress and strain in the plane containing the velocity gradient of the wake show opposite signs with respect to each other, so that eddy viscosity Is negative in this region. This indicates that gradient-diffusion type turbulence models are not appropriate to simulate this type of flow.

The effects of tripping structure on the development of turbulent boundary layer subjected to adverse pressure gradient (역압력 구배가 존재하는 난류 경계층의 발달에 트리핑 구조물이 미치는 영향에 관한 연구)

  • 임태현;김대성;윤순현
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.36-44
    • /
    • 2001
  • The effects of various tripping structures on turbulent boundary layer subjected to adverse pressure gradient were examined. The profiles are compared to zero pressure gradient and adverse pressure gradient. The increases of tripping structures of height, k are affects almost flow parameter included velocity fluctuation, skin friction coefficient and turbulent boundary thickness.

  • PDF

Effects of Material Properties and Fabric Structure Characteristics of Graduated Compression Stockings (GCS) on the Skin Pressure Distributions

  • Liu Rong;Kwok Yi-Lin;Li Yi;Lao Terence-T;Zhang Xin
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.322-331
    • /
    • 2005
  • Graduated compression stockings (GCS) have been widely used for the prophylaxis and treatment of venous diseases. Their gradient pressure function largely related to their fabric structure and material properties. By combing fabric physical testing and wear trials, this study investigated the GCSs fabric structure and material properties at different locations along the stocking hoses, and quantitatively analyzed the effects of fabrics on skin pressure longitudinal and transverse distributions. We concluded that, Structural characteristics and material properties of stocking fabrics were not uniform along the hoses, but a gradual variation from ankle to thigh regions, which significantly influenced the corresponding skin pressure gradient distributions; Tensile (WT, EM) and shearing properties (G) generated most significant differences among ankle, knee and thigh regions along the stocking hose, which significantly influenced the skin pressure lognitudinal gradient distribution. More material indices generating significant gradual changes occurred in the fabric wale direction along stocking hose, meaning that materials properties in wale direction would exert more important impact on the skin pressure gradient performances. And, the greater tensibility and smoother surface of fabric in wale direction would contribute to put stocking on and off, and facilitate wearers' leg extension-flexion movements. The indices of WT and EM of stocking fabrics in series A have strong linear correlations with skin pressure lognitudinal distribution, which largely related to their better performances in gradual changes of material properties. Skin pressure applied by fabric with same material properties produced pronounced differences among four different directions around certain cross-sections of human leg, especially at the ankle region; and, the skin pressure magnitudes at ankle region were more easily influenced by the materials properties, which were considered to be largely related to the anatomic structure of human leg.

HMQC vs HSQC for Small Molecules

  • Kim, Eunhee;Cheong, Hae-Kap
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.4
    • /
    • pp.131-134
    • /
    • 2017
  • Proton detected Heteronuclear Multiple Quantum Coherence (HMQC) and Heteronuclear Single Quantum Coherence (HSQC) essentially provide the same information - correlation of the chemical shift of the proton to J-coupled hetero nuclei such as $^{13}C$ or $^{15}N$ nuclei. This paper is a practical note for the students who ask which one is better and which methods they use routinely. Artifact suppression using phase cycling and gradient pulses are discussed.

Strain gradient theory for vibration analysis of embedded CNT-reinforced micro Mindlin cylindrical shells considering agglomeration effects

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.;Etemadi, S.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.551-565
    • /
    • 2017
  • Based on the strain gradient theory (SGT), vibration analysis of an embedded micro cylindrical shell reinforced with agglomerated carbon nanotubes (CNTs) is investigated. The elastic medium is simulated by the orthotropic Pasternak foundation. The structure is subjected to magnetic field in the axial direction. For obtaining the equivalent material properties of structure and considering agglomeration effects, the Mori-Tanaka model is applied. The motion equations are derived on the basis of Mindlin cylindrical shell theory, energy method and Hamilton's principal. Differential quadrature method (DQM) is proposed to evaluate the frequency of system for different boundary conditions. The effects of different parameters such as CNTs volume percent, agglomeration of CNTs, elastic medium, magnetic field, boundary conditions, length to radius ratio and small scale parameter are shown on the frequency of the structure. The results indicate that the effect of CNTs agglomeration plays an important role in the frequency of system so that considering agglomeration leads to lower frequency. Furthermore, the frequency of structure increases with enhancing the small scale parameter.

An experimental and numerical study on temperature gradient and thermal stress of CFST truss girders under solar radiation

  • Peng, Guihan;Nakamura, Shozo;Zhu, Xinqun;Wu, Qingxiong;Wang, Hailiang
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.605-616
    • /
    • 2017
  • Concrete filled steel tubular (CFST) composite girder is a new type of structures for bridge constructions. The existing design codes cannot be used to predict the thermal stress in the CFST truss girder structures under solar radiation. This study is to develop the temperature gradient curves for predicting thermal stress of the structure based on field and laboratory monitoring data. An in-field testing had been carried out on Ganhaizi Bridge for over two months. Thermal couples were installed at the cross section of the CFST truss girder and the continuous data was collected every 30 minutes. A typical temperature gradient mode was then extracted by comparing temperature distributions at different times. To further verify the temperature gradient mode and investigate the evolution of temperature fields, an outdoor experiment was conducted on a 1:8 scale bridge model, which was installed with both thermal couples and strain gauges. The main factors including solar radiation and ambient temperature on the different positions were studied. Laboratory results were consistent with that from the in-field data and temperature gradient curves were obtained from the in-field and laboratory data. The relationship between the strain difference at top and bottom surfaces of the concrete deck and its corresponding temperature change was also obtained and a method based on curve fitting was proposed to predict the thermal strain under elevated temperature. The thermal stress model for CFST composite girder was derived. By the proposed model, the thermal stress was obtained from the temperature gradient curves. The results using the proposed model were agreed well with that by finite element modelling.

Variable Structure Controller with Time-Varying Switching Surface under the Bound of Input using Evolution Strategy (진화전략과 입력제약조건에 의한 시변스위칭면의 가변구조제어기 설계)

  • Lee, Min-Jeong;Kim, Hyeon-Sik;Choe, Yeong-Gyu;Jeon, Seong-Jeup
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.402-409
    • /
    • 1999
  • Variable structure control law is well known to be a robust control algorithm and evolution strategy is used as an effective search algorithm in optimization problems. In this paper, we propose a variable structure controller with time-varying switching surface. We calculate the maximum value of seitching surface gradient that is of the 3rd order polynomial form. Evolution strategy is used to optimize the parameters of the switching surface gradient. Finally, the proposed method is applied to position tracking control for BLDC motor. Experimental results show that the proposed method is more useful than the conventional variable structure controller.

  • PDF

Improved Gradient Direction Assisted Linking Algorithm for Linear Feature Extraction in High Resolution Satellite Images, an Iterative Dynamic Programming Approach

  • Yang, Kai;Liew, Soo Chin;Lee, Ken Yoong;Kwoh, Leong Keong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.408-410
    • /
    • 2003
  • In this paper, an improved gradient direction assisted linking algorithm is proposed. This algorithm begins with initial seeds satisfying some local criteria. Then it will search along the direction provided by the initial point. A window will be generated in the gradient direction of the current point. Instead of the conventional method which only considers the value of the local salient structure, an improved mathematical model is proposed to describe the desired linear features. This model not only considers the value of the salient structure but also the direction of it. Furthermore, the linking problem under this model can be efficiently solved by dynamic programming method. This algorithm is tested for linear features detection in IKONOS images. The result demonstrates this algorithm is quite promising.

  • PDF

Structure Determination of D-Asparagine by Modified Pseudospectral Hartree-Fock Gradient Method

  • Lee, Jung-Goo
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.953-957
    • /
    • 1994
  • Pseudospectral Hartree-Fock(PSHF) gradient calculations with $6-31G^{**}$ basis set have been carried out to determine the structure of D-Asparagine molecule $(C_4N_2O_3H_8)$ with improved grids and with the BFGS method. The modified PSHF method, despite partial optimization of the gradient code, turned out to be still faster than the conventional ab initio method, GAUSSIAN 90 program by more than twice. The optimum geometry of D-Asparagine obtained by the PSHF method is in good agreement with those calculated by the GAUSSIAN 90 program (within 0.0036 ${\AA}$ for bond lengths, 0.8 degrees for bond angles, and 1.6 degrees for torsional angles) except for three torsional angles. Here, rather large discrepancy of these three torsional angles (5-6 degrees) is attributed to the small differences in the optimum bond lengths and angles between the PSHF and GAUSSIAN 90 calculations.