• Title/Summary/Keyword: gradient of C.B.L

Search Result 78, Processing Time 0.023 seconds

Quantitative Analysis of Twelve Marker Compounds in Palmijihwang-hwan using Ultra-Performance Liquid Chromatography Coupled with Electrospray Ionization Tandem Mass Spectrometry

  • Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • Natural Product Sciences
    • /
    • v.20 no.3
    • /
    • pp.182-190
    • /
    • 2014
  • An ultra-performance liquid chromatography (UPLC) coupled with electrospray ionization (ESI) tandem mass spectrometry (MS) method was established for quantitative analysis of twelve components, allantoin (1), morroniside (2), 5-hydroxymethyl-2-furfural (5-HMF) (3), loganin (4), coumarin (5), cinnamic acid (6), mesaconitine (7), cinnamaldehyde (8), hypaconitine (9), aconitine (10), alisol B (11), and alisol B acetate (12) in a Palmijihwang-hwan decoction. The twelve constituents were separated on a UPLC BEH C18 column ($2.1{\times}100mm$, $1.7{\mu}m$) at a column temperature of $40^{\circ}C$ by gradient elution with 0.1% (v/v) formic acid in water and acetonitrile as the mobile phase. The flow rate was 0.3 mL/min and the injection volume was $2.0{\mu}L$. Calibration curves of all compounds were acquired with values of the correlation coefficient ${\geq}0.99$ within the test ranges. The limits of detection and quantification for all analytes were 0.01 - 4.53 ng/mL and 0.03 - 13.60 ng/mL, respectively. The concentrations of the compounds 1 - 9 and 12 were 72.83, 4389.00, 4859.00, 3155.17, 223.67, 33.50, 1.97, 518.00, 2.25, and $25.00{\mu}g/g$, respectively. However, compounds 10 and 11 were not detected.

Thermal Analysis Comparison of IMO with USCG Design Condition for the INGC During the Cool-down Period (급냉각기간에서 IMO설계조건과 USCG 설계조건에 대한 LMGC 화물탱크의 열해석 비교)

  • Lee, Jung-Hye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1390-1397
    • /
    • 2004
  • This study is concerned with the thermal analysis during the cool-down period of 135,000㎥ class GT-96 membrane type LNG carrier under IMO and USCG design condition. During the cool-down period, the spraying rate for the NG cooling decreases as the temperature of NG falls down from -4$0^{\circ}C$ to -l3$0^{\circ}C$, and the spraying rate for the cooling of the insulation wall increases as the temperature gradient of the insulation wall is large. It was confirmed that there existed the largest temperature decrease at the first barrier and the first insulation, which are among the insulation wall, especially in the top side of the insulation wall under IMO and USCG design condition. Also, as the NG temperature distribution is fixed, the outer temperature condition under the design condition has influence on the temperature variation at the insulation. By the 3-D numerical calculation about the cargo tank and the cofferdam during the cool-down period, the temperature variation in hulls and insulations is precisely predicted under IMO and USCG design condition. From the comparison between two conditions; IMO design condition shows more severe temperature gradient than USCG design condition, therefore, it provides the conservative estimation of the BOG.

Evaluation of Microstructures and Mechanical Properties in Functionally Graded Materials (STS 316L and Low Alloy Steel) Produced by DED Processes (DED 공정으로 제조된 경사조성재료 (STS 316L과 저합금강)의 미세조직 및 기계적특성 평가)

  • Shin, G.;Choo, W.;Yoon, J.H.;Yang, S.Y.;Kim, J.H.
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.309-313
    • /
    • 2022
  • In this study, additive manufacturing of a functionally graded material (FGM) as an alternative to joining dissimilar metals is investigated using directed energy deposition (DED). FGM consists of five different layers, which are mixtures of austenitic stainless steel (type 316 L) and low-alloy steel (LAS, ferritic steel) at ratios of 100:0 (A layer), 75:25 (B layer), 50:50 (C layer), 25:75 (D layer), and 0:100 (E layer), respectively, in each deposition layer. The FGM samples are successfully fabricated without cracks or delamination using the DED method, and specimens are characterized using optical and scanning electron microscopy to monitor their microstructures. In layers C and D of the sample, the tensile strength is determined to be very high owing to the formation of ferrite and martensite structures. However, the elongation is high in layers A and B, which contain a large fraction of austenite.

Physicochemical Properties of Recominant Hepatitis B Surface Antigen Expressed in Mammalian Cell(C127)

  • Lee, Young-Soo;Kim, Byong-Kak;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • v.21 no.5
    • /
    • pp.521-526
    • /
    • 1998
  • The physicochmical properties of recombinant hepatitis B surface antigen (r-HBsAg), which was expressed in C127 mammalian cell were studied. Using roller bottle culture in DMEM supplemented with fetal bovine serum, 10-15 mg/L of r-HBsAg was produced with about 31% of purification yield. The purity of r-HBsAg by HPLC was 99.8% and electron microscopic examination showed homogeneous spherical particle with 22 nm in diameter, a morphological characteristic of HBsAg. The density of r-HBsAg by CsCI density gradient method was 1.19g/ml and the isoelectric point by Mono $P^{TM}$ HR 5/20 column was 4.6. The analysis of subunit protein pattern using SDS-PAGE followed by scanning densitometry gave 81.3% of S protein and 18.7% of pre-S protein. fluorophore-assisted-carbohydrate-electrophoresis analysis showed the relative amount of carbohydrate to protein was 1.7% and it smajr component was N-acetyl glucosamine, which was about 39% of total carbohydrate. The relative amount of lipid to protein determined by vanillin phosphoric acid method was 32.5% and its major component was phospholipid, which was about 70% of total lipid. The physicochemical properties of C127 mammalian cell-derved r-HBsAg are similar to those of p-HBsAg, suggesting that the r-HBsAg can be used in developing a new preventive vaccine against hepatitis B.

  • PDF

Determination of saikosaponin derivatives in Bupleuri Radix using HPLC-ELSD (HPLC-ELSD를 이용한 시호 중의 saikosaponin 유도체의 확인법 개발)

  • Kim, Bo-Mi;Yoon, Kee-Dong;Han, Kyung-Reem;Kim, Jin-Woong
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.57-61
    • /
    • 2008
  • A HPLC-ELSD method was developed to determine saikosaponin derivatives from Bupleuri Radix. Eight saikosaponins, saikosaponin c, i, h, a, $b_2$, g, $b_1$ and d, were analyzed under optimized HPLC conditions [column: Eclipse XDB $C_{18}$ ($150{\times}4.6mm$ i.d., $5{\mu}m$; mobile phase: $H_2O$ with 0.1% $CH_3$COOH (v/v) for solvent A and AcCN with 0.1% $CH_3$COOH (v/v) for solvent B, gradient elution; flow rate: 1mL/min; injection volume: $20{\mu}L$]. Good linearity was achieved in the range from 62.5 to $250{\mu}g/mL$ for each compound, and intra-day precision and accuracy at each concentration level varied between 0.05 and 5.45% and between 93.9 and 109.6%, respectively, whereas those for inter-day variations were between 0.91 to 2.73% and 94.3 to 106.1%. This HPLC-ELSD method was applied for the determination of sakosaponins from Bupleuri Radix samples, and saikosaponin a $(0.79{\pm}0.20mg/g)$, c $(0.33{\pm}0.06mg/g)$ and d $(0.48{\pm}0.15mg/g)$ were observed as major compounds. The other saikosaponins were shown under limit of quantification level thus couldn't be quantified. The present study suggested that the introduced HPLC-ELSD method is selective and reliable, and not only saikosaponin a, but also saikosaponin c and d should be employed as the standard markers for Bupleuri Radix.

Analysis of tetracyclines in shrimp samples based on a two-step extraction approach prior to high-performance liquid chromatography

  • Thinnakorn Sukkhunthod;Thanakorn Pluangklang;Sumita Boonnab;Sira Sansuk;Phitchan Sricharoen;Maliwan Subsadsana
    • Analytical Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.211-219
    • /
    • 2024
  • This study presents a sensitive and reliable method for determining tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC) residues in shrimp samples. A two-step process involving liquid-liquid extraction (LLE) followed by solid-phase extraction (SPE) was developed prior to HPLC analysis. The target analytes were effectively extracted using EDTA/McIlvaine buffer (pH 4.0): methanol (80:20, %v/v), with subsequent clean-up using a C18 SPE cartridge. HPLC separation was conducted on a C18 column (250 mm × 4.6 mm i.d., 5 ㎛) at 30 ℃, using 0.01 % trifluoroacetic acid (A) and acetonitrile (B) as the mobile phase. A gradient elution protocol was applied, transitioning from 85(A):15(B) %v/v to 70(A):30(B) %v/v at 7 min, with a 5 min hold, followed by adjustment to 85(A):15(B) %v/v for 13-14 min. The detection was performed using photodiode array (PDA) at 365 nm with a flow rate of 1.0 mL/min. The calibration curves exhibited good linearity within a concentration range of 0.4-6.0 ㎍/mL (R2 > 0.995). The limits of detection (LOD) for TC, OTC, and CTC in shrimp were 0.034, 0.029, and 0.021 ㎍/mL, respectively. The limits of quantitation (LOQ) for TC, OTC, and CTC were found to be 0.114, 0.097, and 0.071 ㎍/mL, respectively. Recoveries of TC, OTC, and CTC from spiked shrimp samples ranged from 91.0 % to 95.5 %, 92.4 % to 97.2 %, and 93.3 % to 96.6 %, respectively. This method was successfully applied to the determination of TC, OTC, and CTC residues in shrimp samples sourced from various local markets.

First Moment Closure Simulation of Floating Turbulent Premixed Flames in Stagnation Flows (정체 유동장에 떠있는 난류 예혼합 화염의 일차 모멘트 닫힘 모사)

  • Lee, Eun-Ju;Huh, Kang-Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.122-132
    • /
    • 2000
  • Computational fluid dynamic simulation is performed for the floating turbulent premixed flames stabilized in stagnation flows of Cho et al. [1] and Cheng and Shepherd [2]. They are both in the wrinkled flamelet regime far from the extinction limit with $u'/S^{0}_{L}$ less than unity. The turbulent flux is given in the first moment closure as a sum of the classical gradient flux due to turbulent motions and the countergradient flux due to thermal expansion. The parameter $N_{B}'s$ are greater than unity with the countergradient flux dominant over the gradient flux. The countergradient flux is assumed to be zero in $\bar{c}<0.05$. The flame surface density is modeled as a symmetric parabolic function with respect to $\bar{c}$. The product of the maximum flame surface density and the mean stretch factor is considered as a tuning constant to match the flame location. Good agreement is achieved with the measured $\tilde{w}$ and $\bar{c}$ profiles along the axis in both flames.

  • PDF

Development of Analytical Method for Rutin in Buckwheat Plant using High Performance Liquid Chromatography (메밀 식물체 함유 Rutin의 HPLC 분석방법 개발)

  • Choung Myoung-Gun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.spc1
    • /
    • pp.181-186
    • /
    • 2005
  • This experiment was conducted to know the appropriate methods for extraction and determination of rutin contained buckwheat plants. The efficient HPLC analytical condition of rutin contained buckwheat plants was developed. The gradient elution employed a $250mm\times4.6mm$ i.d. Tosoh ODS 120T column. The gradient system was used two mobile phases. A gradient elution was performed with mobile phase A, consisting of $2\%$ Acetic $acid-45\%$ Acetonitrile, and mobile phase B, comprising $2\%$ aqueous acetic acid, and delivered at a flow rate of 1mL/min as follows: 0-18 min, $50-100\%$ A; 18-20 min, $100-50\%$ A; 20-22 min, $50\%$ A. The UV detection wavelength was set at 355 nm. The limit of detection (LOD) for rutin standard compound was 20 ng/mL. And, the higher content of rutin in the extracts was obtained by $80^{\circ}C$ reflex extraction for 120 min. from plants of buckwheat using ethanol.

Quantitative Analysis of the Marker Constituents in Yongdamsagan-Tang using Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (LC-ESI-MS/MS를 이용한 용담사간탕의 주요 성분 분석)

  • Seo, Chang-Seob;Ha, Hyekyung
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.4
    • /
    • pp.320-328
    • /
    • 2017
  • Yongdamsagan-tang has been used to treat the urinary disorders, acute- and chronic-urethritis, and cystitis in Korea. In this study, an ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS/MS) method was established for simultaneous analysis of the 20 bioactive marker compounds, geniposidic acid, chlorogenic acid, geniposide, liquiritin apioside, acteoside, calceolarioside B, liquiritin, nodakenin, baicalin, liquiritigenin, wogonoside, baicalein, glycyrrhizin, wogonin, glycyrrhizin, wogonin, saikosaponin A, decursin, decursinol angelate, alisol B, alisol B acetate, and pachymic acid in traditional herbal formula, Yongdamsagan-tang. Chromatographic separations of all marker compounds were conducted using a Waters Acquity UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}m$) at $45^{\circ}C$ using a mobile phase of 0.1% (v/v) formic acid in water and acetonitrile with gradient elution. The MS analysis was performed using a Waters ACQUITY TQD LC-MS/MS coupled with an electrospray ionization source in the positive and negative modes. The flow rate was 0.3 mL/min and injection volume was $2.0{\mu}L$. The correlation coefficient of 20 marker compounds in the test ranges was 0.9943-1.0000. The limits of detection and quantification values of the all marker components were 0.11-6.66 and 0.34-19.99 ng/mL, respectively. As a result of the analysis using the optimized LC-ESI-MS/MS method, three compounds, geniposidic acid (from Plantaginis Semen), alisol B (from Alismatis Rhizoma), and pachymic acid (from Poria Sclerotium), were not detected in this sample. While the amounts of the 17 compounds except for the geniposidic acid, alisol B, and pachymic acid were $0.04-548.13{\mu}g/g$ in Yongdamsagan-tang sample. Among these compounds, baicalin, bioactive marker compound of Scutellariae Radix, was detected at the highest amount as a $548.13{\mu}g/g$.

Simultaneous Determination of Triterpenoid Saponins from Pulsatilla koreana using High Performance Liquid Chromatography Coupled with a Charged Aerosol Detector (HPLC-CAD)

  • Yeom, Hye-Sun;Suh, Joon-Hyuk;Youm, Jeong-Rok;Han, Sang-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1159-1164
    • /
    • 2010
  • Several triterpenoid saponins from root of Pulsatilla koreana Nakai (Ranunculaceae) were studied and their biological activities were reported. It is difficult to analyze triterpenoid saponins using HPLC-UV due to the lack of chromophores. So, evaporative light scattering detection (ELSD) is used as a valuable alternative to UV detection. More recently, a charged aerosol detection (CAD) has been developed to improve the sensitivity and reproducibility of ELSD. In this study, we developed and validated a novel method of high performance liquid chromatography coupled with a charged aerosol detector for the simultaneous determination of four triterpenoid saponins: pulsatilloside E, pulsatilla saponin H, anemoside B4 and cussosaponin C. Analytes were separated by the Supelco Ascentis$^{(R)}$ Express C18 column (4.6 mm ${\times}$ 150 mm, 2.7 ${\mu}m$) with gradient elution of methanol and water at a flow rate of 0.8 mL/min at $30^{\circ}C$. We examined various factors that could affect the sensitivity of the detectors, including various concentrations of additives, the pH of the mobile phase, and the CAD range. Linear calibration curves were obtained within the concentration ranges of 2 - 200 ${\mu}g$/mL for pulsatilloside E, anemoside $B_4$ and cussosaponin C, and 5 - 500 ${\mu}g$/mL for pulsatilla saponin H with correlation coefficient ($R^2$) greater than 0.995. The limit of detection (LOD) and quantification (LOQ) were 0.04 - 0.2 and 2 - 5 ${\mu}g$/mL, respectively. The validity of the developed HPLC-CAD method was confirmed by satisfactory values of linearity, intra- and inter-day accuracy and precision. This method could be successfully applied to quality evaluation, quality control and monitoring of Pulsatilla koreana.