• 제목/요약/키워드: gradient ideal

검색결과 42건 처리시간 0.017초

바나듐의 고효율 회수를 위한 배소 전처리용 Rotary kiln 내 열화학적 모델인자 (Thermochemical Modeling Factors in Roasting Pre-treatment using a Rotary Kiln for Efficient Vanadium Recovery)

  • 이상훈;정경우
    • 자원리싸이클링
    • /
    • 제31권2호
    • /
    • pp.33-39
    • /
    • 2022
  • 본 연구에서는 Rotary kiln(RK)을 이용하여 바나듐 염배소 전처리시 적정온도를 유지하기 위한 열화학적 모델링 관련 인자에 대해 논의하였다. 관련 모델 메카니즘은 열화학 관련 반응속도모델, 열수지 및 열전달 등이며 이를 통해 rotary kiln내 온도분포를 직관적으로 추정할 수 있다. 이러한 작업을 통해 최적 염배소 온도인 1000 ℃(또는 약 1273 K) 근방을 kiln내에서 장기간 유지하는 것이 관건이다. 본 연구에서는 탄화수소(천연가스) 연료연소 및 광석 산화반응으로부터의 발열과 광석으로의 복사열전달 등을 산정하였다. 또한 열화학 측면에서 Rotary kiln내 적정 배소온도구역에서의 온도구배 완화를 위한 방안을 제시하였다.

다파장 관측 자료를 이용한 다양한 환경에서의 은하 진화 연구 (A Multi-Wavelength Study of Galaxy Transition in Different Environments)

  • 이광호
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.34.2-35
    • /
    • 2018
  • Galaxy transition from star-forming to quiescent, accompanied with morphology transformation, is one of the key unresolved issues in extragalactic astronomy. Although several environmental mechanisms have been proposed, a deeper understanding of the impact of environment on galaxy transition still requires much exploration. My Ph.D. thesis focuses on which environmental mechanisms are primarily responsible for galaxy transition in different environments and looks at what happens during the transition phase using multi-wavelength photometric/spectroscopic data, from UV to mid-infrared (MIR), derived from several large surveys (GALEX, SDSS, and WISE) and our GMOS-North IFU observations. Our multi-wavelength approach provides new insights into the *late* stages of galaxy transition with a definition of the MIR green valley different from the optical green valley. I will present highlights from three areas in my thesis. First, through an in-depth study of environmental dependence of various properties of galaxies in a nearby supercluster A2199 (Lee et al. 2015), we found that the star formation of galaxies is quenched before the galaxies enter the MIR green valley, which is driven mainly by strangulation. Then, the morphological transformation from late- to early-type galaxies occurs in the MIR green valley. The main environmental mechanisms for the morphological transformation are galaxy-galaxy mergers and interactions that are likely to happen in high-density regions such as galaxy groups/clusters. After the transformation, early-type MIR green valley galaxies keep the memory of their last star formation for several Gyr until they move on to the next stage for completely quiescent galaxies. Second, compact groups (CGs) of galaxies are the most favorable environments for galaxy interactions. We studied MIR properties of galaxies in CGs and their environmental dependence (Lee et al. 2017), using a sample of 670 CGs identified using a friends-of-friends algorithms. We found that MIR [3.4]-[12] colors of CG galaxies are, on average, bluer than those of cluster galaxies. As CGs are located in denser regions, they tend to have larger early-type galaxy fractions and bluer MIR color galaxies. These trends can also be seen for neighboring galaxies around CGs. However, CG members always have larger early-type fractions and bluer MIR colors than their neighboring galaxies. These results suggest that galaxy evolution is faster in CGs than in other environments and that CGs are likely to be the best place for pre-processing. Third, post-starburst galaxies (PSBs) are an ideal laboratory to investigate the details of the transition phase. Their spectra reveal a phase of vigorous star formation activity, which is abruptly ended within the last 1 Gyr. Numerical simulations predict that the starburst, and thus the current A-type stellar population, should be localized within the galaxy's center (< kpc). Yet our GMOS IFU observations show otherwise; all five PSBs in our sample have Hdelta absorption line profiles that extend well beyond the central kpc. Most interestingly, we found a negative correlation between the Hdelta gradient slopes and the fractions of the stellar mass produced during the starburst, suggesting that stronger starbursts are more centrally-concentrated. I will discuss the results in relation with the origin of PSBs.

  • PDF