• Title/Summary/Keyword: gradient boosting

Search Result 240, Processing Time 0.03 seconds

DLDW: Deep Learning and Dynamic Weighing-based Method for Predicting COVID-19 Cases in Saudi Arabia

  • Albeshri, Aiiad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.212-222
    • /
    • 2021
  • Multiple waves of COVID-19 highlighted one crucial aspect of this pandemic worldwide that factors affecting the spread of COVID-19 infection are evolving based on various regional and local practices and events. The introduction of vaccines since early 2021 is expected to significantly control and reduce the cases. However, virus mutations and its new variant has challenged these expectations. Several countries, which contained the COVID-19 pandemic successfully in the first wave, failed to repeat the same in the second and third waves. This work focuses on COVID-19 pandemic control and management in Saudi Arabia. This work aims to predict new cases using deep learning using various important factors. The proposed method is called Deep Learning and Dynamic Weighing-based (DLDW) COVID-19 cases prediction method. Special consideration has been given to the evolving factors that are responsible for recent surges in the pandemic. For this purpose, two weights are assigned to data instance which are based on feature importance and dynamic weight-based time. Older data is given fewer weights and vice-versa. Feature selection identifies the factors affecting the rate of new cases evolved over the period. The DLDW method produced 80.39% prediction accuracy, 6.54%, 9.15%, and 7.19% higher than the three other classifiers, Deep learning (DL), Random Forest (RF), and Gradient Boosting Machine (GBM). Further in Saudi Arabia, our study implicitly concluded that lockdowns, vaccination, and self-aware restricted mobility of residents are effective tools in controlling and managing the COVID-19 pandemic.

A Study on Design of Real-time Big Data Collection and Analysis System based on OPC-UA for Smart Manufacturing of Machine Working

  • Kim, Jaepyo;Kim, Youngjoo;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.121-128
    • /
    • 2021
  • In order to design a real time big data collection and analysis system of manufacturing data in a smart factory, it is important to establish an appropriate wired/wireless communication system and protocol. This paper introduces the latest communication protocol, OPC-UA (Open Platform Communication Unified Architecture) based client/server function, applied user interface technology to configure a network for real-time data collection through IoT Integration. Then, Database is designed in MES (Manufacturing Execution System) based on the analysis table that reflects the user's requirements among the data extracted from the new cutting process automation process, bush inner diameter indentation measurement system and tool monitoring/inspection system. In summary, big data analysis system introduced in this paper performs SPC (statistical Process Control) analysis and visualization analysis with interface of OPC-UA-based wired/wireless communication. Through AI learning modeling with XGBoost (eXtream Gradient Boosting) and LR (Linear Regression) algorithm, quality and visualization analysis is carried out the storage and connection to the cloud.

Comparison Analysis of Machine Learning for Concrete Crack Depths Prediction Using Thermal Image and Environmental Parameters (열화상 이미지와 환경변수를 이용한 콘크리트 균열 깊이 예측 머신 러닝 분석)

  • Kim, Jihyung;Jang, Arum;Park, Min Jae;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.99-110
    • /
    • 2021
  • This study presents the estimation of crack depth by analyzing temperatures extracted from thermal images and environmental parameters such as air temperature, air humidity, illumination. The statistics of all acquired features and the correlation coefficient among thermal images and environmental parameters are presented. The concrete crack depths were predicted by four different machine learning models: Multi-Layer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB), and AdaBoost (AB). The machine learning algorithms are validated by the coefficient of determination, accuracy, and Mean Absolute Percentage Error (MAPE). The AB model had a great performance among the four models due to the non-linearity of features and weak learner aggregation with weights on misclassified data. The maximum depth 11 of the base estimator in the AB model is efficient with high performance with 97.6% of accuracy and 0.07% of MAPE. Feature importances, permutation importance, and partial dependence are analyzed in the AB model. The results show that the marginal effect of air humidity, crack depth, and crack temperature in order is higher than that of the others.

Research on the Lesion Classification by Radiomics in Laryngoscopy Image (후두내시경 영상에서의 라디오믹스에 의한 병변 분류 연구)

  • Park, Jun Ha;Kim, Young Jae;Woo, Joo Hyun;Kim, Kwang Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.353-360
    • /
    • 2022
  • Laryngeal disease harms quality of life, and laryngoscopy is critical in identifying causative lesions. This study extracts and analyzes using radiomics quantitative features from the lesion in laryngoscopy images and will fit and validate a classifier for finding meaningful features. Searching the region of interest for lesions not classified by the YOLOv5 model, features are extracted with radionics. Selected the extracted features are through a combination of three feature selectors, and three estimator models. Through the selected features, trained and verified two classification models, Random Forest and Gradient Boosting, and found meaningful features. The combination of SFS, LASSO, and RF shows the highest performance with an accuracy of 0.90 and AUROC 0.96. Model using features to select by SFM, or RIDGE was low lower performance than other things. Classification of larynx lesions through radiomics looks effective. But it should use various feature selection methods and minimize data loss as losing color data.

Comparative Analysis of Machine Learning Algorithms for Healthy Management of Collaborative Robots (협동로봇의 건전성 관리를 위한 머신러닝 알고리즘의 비교 분석)

  • Kim, Jae-Eun;Jang, Gil-Sang;Lim, KuK-Hwa
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.93-104
    • /
    • 2021
  • In this paper, we propose a method for diagnosing overload and working load of collaborative robots through performance analysis of machine learning algorithms. To this end, an experiment was conducted to perform pick & place operation while changing the payload weight of a cooperative robot with a payload capacity of 10 kg. In this experiment, motor torque, position, and speed data generated from the robot controller were collected, and as a result of t-test and f-test, different characteristics were found for each weight based on a payload of 10 kg. In addition, to predict overload and working load from the collected data, machine learning algorithms such as Neural Network, Decision Tree, Random Forest, and Gradient Boosting models were used for experiments. As a result of the experiment, the neural network with more than 99.6% of explanatory power showed the best performance in prediction and classification. The practical contribution of the proposed study is that it suggests a method to collect data required for analysis from the robot without attaching additional sensors to the collaborative robot and the usefulness of a machine learning algorithm for diagnosing robot overload and working load.

Assessment of concrete macrocrack depth using infrared thermography

  • Bae, Jaehoon;Jang, Arum;Park, Min Jae;Lee, Jonghoon;Ju, Young K.
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.501-509
    • /
    • 2022
  • Cracks are common defects in concrete structures. Thus far, crack inspection has been manually performed using the contact inspection method. This manpower-dependent method inevitably increases the cost and work hours. Various non-contact studies have been conducted to overcome such difficulties. However, previous studies have focused on developing a methodology for non-contact inspection or local quantitative detection of crack width or length on concrete surfaces. However, crack depth can affect the safety of concrete structures. In particular, although macrocrack depth is structurally fatal, it is difficult to find it with the existing method. Therefore, an experimental investigation based on non-contact infrared thermography and multivariate machine learning was performed in this study to estimate the hidden macrocrack depth. To consider practical applications for inspection, an experiment was conducted that considered the simulated piloting of an unmanned aerial vehicle equipped with infrared thermography equipment. The crack depths (10-60 mm) were comparatively evaluated using linear regression, gradient boosting, and random forest (AI regression methods).

Predicting Reports of Theft in Businesses via Machine Learning

  • JungIn, Seo;JeongHyeon, Chang
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.499-510
    • /
    • 2022
  • This study examines the reporting factors of crime against business in Korea and proposes a corresponding predictive model using machine learning. While many previous studies focused on the individual factors of theft victims, there is a lack of evidence on the reporting factors of crime against a business that serves the public good as opposed to those that protect private property. Therefore, we proposed a crime prevention model for the willingness factor of theft reporting in businesses. This study used data collected through the 2015 Commercial Crime Damage Survey conducted by the Korea Institute for Criminal Policy. It analyzed data from 834 businesses that had experienced theft during a 2016 crime investigation. The data showed a problem with unbalanced classes. To solve this problem, we jointly applied the Synthetic Minority Over Sampling Technique and the Tomek link techniques to the training data. Two prediction models were implemented. One was a statistical model using logistic regression and elastic net. The other involved a support vector machine model, tree-based machine learning models (e.g., random forest, extreme gradient boosting), and a stacking model. As a result, the features of theft price, invasion, and remedy, which are known to have significant effects on reporting theft offences, can be predicted as determinants of such offences in companies. Finally, we verified and compared the proposed predictive models using several popular metrics. Based on our evaluation of the importance of the features used in each model, we suggest a more accurate criterion for predicting var.

Cost-optimal Preventive Maintenance based on Remaining Useful Life Prediction and Minimum-repair Block Replacement Models (잔여 유효 수명 예측 모형과 최소 수리 블록 교체 모형에 기반한 비용 최적 예방 정비 방법)

  • Choo, Young-Suk;Shin, Seung-Jun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.18-30
    • /
    • 2022
  • Predicting remaining useful life (RUL) becomes significant to implement prognostics and health management of industrial systems. The relevant studies have contributed to creating RUL prediction models and validating their acceptable performance; however, they are confined to drive reasonable preventive maintenance strategies derived from and connected with such predictive models. This paper proposes a data-driven preventive maintenance method that predicts RUL of industrial systems and determines the optimal replacement time intervals to lead to cost minimization in preventive maintenance. The proposed method comprises: (1) generating RUL prediction models through learning historical process data by using machine learning techniques including random forest and extreme gradient boosting, and (2) applying the system failure time derived from the RUL prediction models to the Weibull distribution-based minimum-repair block replacement model for finding the cost-optimal block replacement time. The paper includes a case study to demonstrate the feasibility of the proposed method using an open dataset, wherein sensor data are generated and recorded from turbofan engine systems.

Understanding Customer Purchasing Behavior in E-Commerce using Explainable Artificial Intelligence Techniques (XAI 기법을 이용한 전자상거래의 고객 구매 행동 이해)

  • Lee, Jaejun;Jeong, Ii Tae;Lim, Do Hyun;Kwahk, Kee-Young;Ahn, Hyunchul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.387-390
    • /
    • 2021
  • 최근 전자 상거래 시장이 급격한 성장을 이루면서 고객들의 급변하는 니즈를 파악하는 것이 기업들의 수익에 직결되는 요소로 인식되고 있다. 이에 기업들은 고객들의 니즈를 신속하고 정확하게 파악하기 위해, 기축적된 고객 관련 각종 데이터를 활용하려는 시도를 강화하고 있다. 기존 시도들은 주로 구매 행동 예측에 중점을 두었으나 고객 행동의 전후 과정을 해석하는데 있어 어려움이 존재했다. 본 연구에서는 고객이 구매한 상품을 확정 또는 환불하는 행동을 취할 때 해당 행동이 발생하는데 있어 어떤 요소들이 작용하였는지를 파악하고, 어떤 고객이 환불할 지를 예측하는 예측 모형을 새롭게 제시한다. 예측 모형 구현에는 트리 기반 앙상블 방법을 사용해 예측력을 높인 XGBoost 기법을 적용하였으며, 고객 의도에 영향을 미치는 요소들을 파악하기 위하여 대표적인 설명가능한 인공지능(XAI) 기법 중 하나인 SHAP 기법을 적용하였다. 이를 통해 특정 고객 행동에 대한 각 요인들의 전반적인 영향 뿐만 아니라, 각 개별 고객에 대해서도 어떤 요소가 환불결정에 영향을 미쳤는지 파악할 수 있었다. 이를 통해 기업은 고객 개개인의 의사 결정에 영향을 미치는 요소를 파악하여 개인화 마케팅에 사용할 수 있을 것으로 기대된다.

  • PDF

Analysis of algal spatial distribution characteristics using hyperspectral images and machine learning in upstream reach of Baekje weir (초분광영상과 머신러닝을 이용한 백제보 상류구간 조류 공간분포 특성분석)

  • Jang, Wonjin;Kim, Jinuk;Chung, Jeehun;Park, Yongeun;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.89-89
    • /
    • 2021
  • 부영양화된 호수나 유속이 느린 하천에서 발생하는 녹조의 과도한 발생은 하천 생태계 훼손, 동식물의 건강, 담수의 오염 등 환경 사회 경제적으로 큰 피해를 준다. 현재 수질 측정망은 정해진 지점에서 Chlorophyll-a(Chl-a), Phycocyanin(PC)을 대표농도로 산정하고 조류경보에 활용하고 있으나, 일주일에 한번씩 샘플링을 통해 Chl-a 및 PC를 측정하여 시공간적인 신뢰성의 문제가 제기될 수 있다. 본 연구에서는 기존 점단위 조류 모니터링의 한계점을 개선하기 위해 초분광영상 자료를 머신러닝 기법에 적용하여 Chl-a 및 PC 산정 알고리즘을 개발하였다. 이를 위해 Chl-a와 PC의 최대 흡수, 반사 파장대, 주요 물 흡수 파장대 자료를 조합하여 9개의 파장비를 구축하였으며, 기존 연구에서 활용한 머신러닝 기법인 Partial Least Square, Random Forest, Gradient Boosting, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Network를 검토하여 최적 모델을 선정하였다. 학습된 머신러닝의 성능을 R2, NSE, RMSE 목적함수를 이용해 평가하였으며, 그 결과 ANN이 각각 PC 0.801, 0.755, 11.774 mg/m3, Chl-a 0.733, 0.622, 8.736 mg/m3로 가장 우수한 성능을 보였다. 최적화 된 ANN 모델을 백제보 상류 2016-2017년 항공 초분광영상에 적용하여 시공간에 따른 조류 분포변화를 평가하고자 한다.

  • PDF