오디션, 육아, 버라이어티 등 다양한 예능 프로그램들의 수가 점점 증가하고 있다. 특히 종합편성채널이 개국한 이후에 예능 시장 경쟁이 심화되고 있다. 그에 따라 시청률과 회차에 대한 연구의 필요성이 대두되고 있다. 본 연구의 목적은 예능 프로그램 시청률과 회차의 예측모형을 제시하고 주요요인을 살펴보는 데 있다. 모형 적합 시 선형회귀모형, 로지스틱 회귀모형, LASSO 회귀모형, 랜덤 포레스트, 그래디언트 부스팅, 서포트 벡터 머신 등과 같은 다양한 분석 방법을 고려하였다. 예능 시청률 예측 모형에서는 첫 회가 방영되기 전과 방영된 후 두 가지 모형을 적합하였고, 회차 예측 모형에서는 예능 시청률 예측 모형의 예측치를 추가 변수로 생성하여 모형을 적합하였다. 그 결과 첫 회 방영 전 예능 시청률 예측에서는 방송사, 이전 시즌 시청률, 시작 연도, 기사 수가 큰 영향을 주는 것으로 나타났다. 첫 회 방영 후 예능 시청률 예측에서는 첫 회 시청률, 방송사, 예능 유형이 중요한 변수로 나타났으며, 두 모형 모두 랜덤 포레스트 모형에서 가장 좋은 결과를 보였다. 예능 회차 예측에서는 평균 시청률 예측치, 시작 연도, 예능유형, 방송국 등이 중요한 변수로 나타났다.
The Bank of Korea raised the benchmark interest rate by a quarter percentage point to 1.75 percent per year, and analysts predict that South Korea's policy rate will reach 2.00 percent by the end of calendar year 2022. Furthermore, because market volatility has been significantly increased by a variety of factors, including rising rates, inflation, and market volatility, many investors have struggled to meet their financial objectives or deliver returns. Banks and financial institutions are attempting to provide Robo-Advisors to manage client portfolios without human intervention in this situation. In this regard, determining the best hyper-parameter combination is becoming increasingly important. This study compares some activation functions of the Deep Deterministic Policy Gradient(DDPG) and Twin-delayed Deep Deterministic Policy Gradient (TD3) Algorithms to choose a sequence of actions that maximizes long-term reward. The DDPG and TD3 outperformed its benchmark index, according to the results. One reason for this is that we need to understand the action probabilities in order to choose an action and receive a reward, which we then compare to the state value to determine an advantage. As interest in machine learning has grown and research into deep reinforcement learning has become more active, finding an optimal hyper-parameter combination for DDPG and TD3 has become increasingly important.
강수 및 침투 등으로 발생하는 지하수위의 변동을 예측하는 것은 지하수 자원의 활용 및 관리에 필수적이다. 지하수위의 변동은 지하수 자원의 활용 및 관리뿐만이 아닌 홍수 발생과 지반의 응력상태 등에 직접적인 영향을 미치기 때문에 정확한 예측이 필요하다. 본 연구는 인공신경망 중 다층퍼셉트론(Multi Layer Perceptron, MLP)을 이용한 지하수위 예측성능 향상을 위해 MLP의 구조 중 Optimizer를 개량하였다. MLP는 입력자료와 출력자료간 최적의 상관관계(가중치 및 편향)를 찾는 Optimizer와 출력되는 값을 결정하는 활성화 함수의 연산을 반복하여 학습한다. 특히 Optimizer는 신경망의 출력값과 관측값의 오차가 최소가 되는 상관관계를 찾는 연산자로써 MLP의 학습 및 예측성능에 직접적인 영향을 미친다. 기존의 Optimizer는 경사하강법(Gradient Descent, GD)을 기반으로 하는 Optimizer를 사용했다. 하지만 기존의 Optimizer는 미분을 이용하여 상관관계를 찾기 때문에 지역탐색 위주로 진행되며 기존에 생성된 상관관계를 저장하는 구조가 없어 지역 최적해로 수렴할 가능성이 있다는 단점이 있다. 본 연구에서는 기존 Optimizer의 단점을 개선하기 위해 지역탐색과 전역탐색을 동시에 고려할 수 있으며 기존의 해를 저장하는 구조가 있는 메타휴리스틱 최적화 알고리즘을 이용하였다. 메타휴리스틱 최적화 알고리즘 중 구조가 간단한 화음탐색법(Harmony Search, HS)과 GD의 결합모형(HS-GD)을 MLP의 Optimizer로 사용하여 기존 Optimizer의 단점을 개선하였다. HS-GD를 이용한 MLP의 성능검토를 위해 이천시 지하수위 예측을 실시하였으며 예측 결과를 기존의 Optimizer를 이용한 MLP 및 HS를 이용한 MLP의 예측결과와 비교하였다.
본 연구는 분포형 수문 모형인 TOPMODEL의 기본 입력자료인 지형지수, 1n(a/tan {{{{{B}_{}}}}}) 산정을 위한 알고리즘과 수로형성면적(CIT)과 구배멱급수(H)를 고려한 개선된 지형지수 산정 알고리즘의 국내 지형에 대한 적용성을 검토하였다. 대상 유역은 청도천 유역의 한제천 소유역 (18.6km2)과 위천 대표 시험유역의 동곡 소유역(33.6km2)으로, 이 두 유역에 대한 10m, 20m, 30m, 50m, 100m의 수치고도자료(Digital elevation model ; DEM)을 구축하였다. 기존 알고리즘에 대해 수로형성면적의 적용 결과, 수로 격자에 대한 지형지수의 적절한 처리를 통해 개선된 계산 결과를 얻을 수 있었고, 구배멱급수(H)의 적용을 통해 기존의 다방향 흐름(MFD) 알고리즘에 비해 유역 내 협곡 지점에 대한 흐름의 수렴 효과를 얻을 수 있었다. 개선된 알고리즘에 의해 계산된 지형지수 분포는 최대값의 감소로 유출 모의시 과도한 초기 유출 계산 문제를 완화시킬 수 있었다. 기존 알고리즘을 사용한 유출 모의와 비교하여 개선된 알고리즘을 활용한 전체적인 모의 효율은 유사하나 수문정보의 공간 분포 산정은 보다 합리적인 결과를 도출하였다,
샌드매트의 설계는 연약지반의 압밀침하특성과 매트의 투수성이 상호 결합된 연성압밀해석에 의해 얻어지는 간극 수압거동에 의해 검토되어야 한다. 본 연구에서는 샌드매트의 수두분포에 대하여 Terzaghi 1차원 압밀방정식을 이용한 수치해석을 실시하여 준설모래를 샌드매트 재료로 이용한 성토모형실험의 결과와 비교분석하였다. 실험결과 단계 성토가 증가하면서 간극수압은 성토중심부에서 증가되는 침하량의 영향을 받고 있다. 그리고 잔류된 간극수압 영향으로 간극수압의 상승속도가 수치해석결과보다 지연되고 있다. 따라서 최종적으로 샌드매트 시공은 성토중심부에서 증가되는 동수구배를 저감시키도록 포설되어야 한다.
약물유전체학 연구의 주요 목표는 고차원의 유전 변수를 기반으로 개인의 약물 반응성을 예측하는 것이다. 변수의 개수가 많기 때문에 변수의 개수를 줄이기 위해서는 변수 선택이 필요하며, 선택된 변수들은 머신러닝 알고리즘을 사용하여 예측 모델을 구축하는데 사용된다. 본 연구에서는 400명의 뇌전증 환자의 차세대 염기서열 분석 데이터에 로지스틱 회귀, ReliefF, TurF, 랜덤 포레스트, LASSO의 조합과 같은 여러 가지 혼합 변수 선택 방법을 적용하였다. 선택된 변수들에 랜덤포레스트, 그래디언트 부스팅, 서포트벡터머신을 포함한 머신러닝 방법들을 적용했고 스태킹을 통해 앙상블 모형을 구축하였다. 본 연구의 결과는 랜덤포레스트와 ReliefF의 혼합 변수 선택 방법을 이용한 스태킹 모형이 다른 모형보다 더 좋은 성능을 보인다는 것을 보여주었다. 5-폴드 교차 검증을 기반으로 하여 적합한 최적 모형의 평균 검증 정확도는 0.727이고 평균 검증 AUC 값은 0.761로 나타났다. 또한, 동일한 변수를 사용할 때 스태킹 모델이 단일 머신러닝 예측 모델보다 성능이 우수한 것으로 나타났다.
본 연구에서는 개수로 흐름에서 오염물질 이동 현상에 대한 이차흐름의 영향을 분석하였다. 운동량 방정식과 스칼라 수송 방정식에서의 난류 폐합을 위해 레이놀즈응력 모형 및 GGDH 모형을 사용하였다. 개발된 모형을 이용하여 조 세립상의 횡방향 연속구조를 갖는 개수로 흐름에서의 오염물질 이동에 대한 이차흐름의 영향을 분석하였다. 그 결과, 이차흐름의 영향으로 인해 최대 농도 값의 발생 위치가 이동하는 것으로 나타났으며, 농도 분포 역시 정규 분포에서 거리에 따라 점차 왜곡 되는 것으로 확인되었다. 또한, 이차흐름의 영향으로 자유수면 근처에서는 매끄러운 하상에 비해 거친 하상에서의 오염물질 농도가 더 크게 발생되었으며, 스칼라-흐름률을 계산한 결과, 오염물질의 수직방향 확산은 매끄러운 하상에 비해 거친 하상에서 더 빨리 진행되는 것으로 확인되었다. 한편, 농도 분포 변화에 대한 이차흐름 및 스칼라-흐름률의 영향을 살펴보기 위하여 스칼라 수송률 분석을 수행하였다.
A연속류도로는 교통량-속도-밀도 간에 상호 밀접한 관계가 있기 때문에 연결로교통류가 본선에 합류하게 되면 속도나 밀도가 변할 뿐만 아니라 이들 간의 상관관계를 나타내는 모형식도 달라진다. 따라서, 본 연구는 합류영향권역에서 시공간적으로 연속된 교통자료를 이용하여 속도-밀도 변수간의 상관관계 변화구간을 파악하고, 구간별 변화내용을 분석하였다. 분석결과, 상류 및 합류구간에서는 "Underwood"모형의 지수형태를 보이며, 합류구간을 통과한 하류구간에서는 "Greenshields"모형의 직선형태를 나타내었다. 속도-밀도 상관관계가 변화된 하류변화구간은 연결로와 접속한 3차로의 합류 종점부를 기점으로 하류 100m~500m 범위에서 내측차로로 갈수록 점차 하류방향으로 이동하는 현상을 보였다. 또한, 상류구간, 합류구간, 하류변화구간은 속도-밀도 모형에서 자유속도(상수)와 혼잡밀도에 대한 자유속도비(기울기)가 통계적으로 서로 다른 이질적인 교통류로 나타났다.
Algal bloom is an ongoing issue in the management of freshwater systems for drinking water supply, and the chlorophyll-a concentration is commonly used to represent the status of algal bloom. Thus, the prediction of chlorophyll-a concentration is essential for the proper management of water quality. However, the chlorophyll-a concentration is affected by various water quality and environmental factors, so the prediction of its concentration is not an easy task. In recent years, many advanced machine learning algorithms have increasingly been used for the development of surrogate models to prediction the chlorophyll-a concentration in freshwater systems such as rivers or reservoirs. This study used a light gradient boosting machine(LightGBM), a gradient boosting decision tree algorithm, to develop an ensemble machine learning model to predict chlorophyll-a concentration. The field water quality data observed at Daecheong Lake, obtained from the real-time water information system in Korea, were used for the development of the model. The data include temperature, pH, electric conductivity, dissolved oxygen, total organic carbon, total nitrogen, total phosphorus, and chlorophyll-a. First, a LightGBM model was developed to predict the chlorophyll-a concentration by using the other seven items as independent input variables. Second, the time-lagged values of all the input variables were added as input variables to understand the effect of time lag of input variables on model performance. The time lag (i) ranges from 1 to 50 days. The model performance was evaluated using three indices, root mean squared error-observation standard deviation ration (RSR), Nash-Sutcliffe coefficient of efficiency (NSE) and mean absolute error (MAE). The model showed the best performance by adding a dataset with a one-day time lag (i=1) where RSR, NSE, and MAE were 0.359, 0.871 and 1.510, respectively. The improvement of model performance was observed when a dataset with a time lag up of about 15 days (i=15) was added.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.