• 제목/요약/키워드: graded index

검색결과 335건 처리시간 0.023초

Analysis of functionally graded beam using a new first-order shear deformation theory

  • Hadji, Lazreg;Daouadji, T. Hassaine;Meziane, M. Ait Amar;Tlidji, Y.;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • 제57권2호
    • /
    • pp.315-325
    • /
    • 2016
  • A new first-order shear deformation theory is developed for dynamic behavior of functionally graded beams. The equations governing the axial and transverse deformations of functionally graded plates are derived based on the present first-order shear deformation plate theory. The governing equations and boundary conditions of functionally graded beams have the simple forms as those of isotropic plates. The influences of the volume fraction index and thickness-to-length ratio on the fundamental frequencies are discussed. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Free vibration analysis of edge cracked symmetric functionally graded sandwich beams

  • Cunedioglu, Yusuf
    • Structural Engineering and Mechanics
    • /
    • 제56권6호
    • /
    • pp.1003-1020
    • /
    • 2015
  • In this study, free vibration analysis of an edge cracked multilayered symmetric sandwich beams made of functionally graded materials are investigated. Modelling of the cracked structure is based on the linear elastic fracture mechanics theory. Material properties of the functionally graded beams change in the thickness direction according to the power and exponential laws. To represent functionally graded symmetric sandwich beams more realistic, fifty layered beam is considered. Composition of each layer is different although each layer is isotropic and homogeneous. The considered problem is carried out within the Timoshenko first order shear deformation beam theory by using finite element method. A MATLAB code developed to calculate natural frequencies for clamped and simply supported conditions. The obtained results are compared with published studies and excellent agreement is observed. In the study, the effects of crack location, depth of the crack, power law index and slenderness ratio on the natural frequencies are investigated.

Thermal effect on axisymmetric bending of functionally graded circular and annular plates using DQM

  • Hamzehkolaei, N. Safaeian;Malekzadeh, P.;Vaseghi, J.
    • Steel and Composite Structures
    • /
    • 제11권4호
    • /
    • pp.341-358
    • /
    • 2011
  • This paper presents the effects of thermal environment and temperature-dependence of the material properties on axisymmetric bending of functionally graded (FG) circular and annular plates. The material properties are assumed to be temperature-dependent and graded in the thickness direction. In order to accurately evaluate the effect of thermal environment, the initial thermal stresses are obtained by solving the thermoelastic equilibrium equations. Governing equations and the related boundary conditions, which include the effects of initial thermal stresses, are derived using the virtual work principle based on the elasticity theory. The differential quadrature method (DQM) as an efficient and robust numerical tool is used to obtain the initial thermal stresses and response of the plate. Comparison studies with some available results for FG plates are performed. The influences of temperature rise, temperature-dependence of material properties, material graded index and different geometrical parameters are carried out.

Nonlinear responses of an arbitrary FGP circular plate resting on the Winkler-Pasternak foundation

  • Arefi, Mohammad;Allam, M.N.M.
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.81-100
    • /
    • 2015
  • This paper presents nonlinear analysis of an arbitrary functionally graded circular plate integrated with two functionally graded piezoelectric layers resting on the Winkler-Pasternak foundation. Geometric nonlinearity is considered in the strain-displacement relation based on the Von-Karman assumption. All the mechanical and electrical properties except Poisson's ratio can vary continuously along the thickness of the plate based on a power function. Electric potential is assumed as a quadratic function along the thickness direction. After derivation of general nonlinear equations, as an instance, numerical results of a functionally graded material integrated with functionally graded piezoelectric material obeying two different functionalities is investigated. The effect of different parameters such as parameters of foundation, non homogenous index and boundary conditions can be investigated on the mechanical and electrical results of the system. A comprehensive comparison between linear and nonlinear responses of the system presents necessity of this study. Furthermore, the obtained results can be validated by using previous linear and nonlinear analyses after removing the effect of foundation.

Size dependent torsional vibration of a rotationally restrained circular FG nanorod via strain gradient nonlocal elasticity

  • Busra Uzun;Omer Civalek;M. Ozgur Yayli
    • Advances in nano research
    • /
    • 제16권2호
    • /
    • pp.175-186
    • /
    • 2024
  • Dynamical behaviors of one-dimensional (1D) nano-sized structures are of great importance in nanotechnology applications. Therefore, the torsional dynamic response of functionally graded nanorods which could be used to model the nano electromechanical systems or micro electromechanical systems with torsional motion about the center of twist is examined based on the theory of strain gradient nonlocal elasticity in this work. The mathematical background is constructed based on both strain gradient theory and Eringen's nonlocal elasticity theory. The equation of motions and boundary conditions of radially functionally graded nanorods are derived using Hamilton's principle and then transformed into the eigenvalue analysis by using Fourier sine series. A general coefficient matrix is obtained to assemble the Stokes' transformation. The case of a restrained functionally graded nanorod embedded in two elastic springs against torsional rotation is then deeply investigated. The effect of changing the functionally graded index, the stiffness of elastic boundary conditions, the length scale parameter and nonlocal parameter are investigated in detail.

Static analysis of functionally graded non-prismatic sandwich beams

  • Rezaiee-Pajand, M.;Masoodi, Amir R.;Mokhtari, M.
    • Advances in Computational Design
    • /
    • 제3권2호
    • /
    • pp.165-190
    • /
    • 2018
  • In this article, the static behavior of non-prismatic sandwich beams composed of functionally graded (FG) materials is investigated for the first time. Two types of beams in which the variation of elastic modulus follows a power-law form are studied. The principle of minimum total potential energy is applied along with the Ritz method to derive and solve the governing equations. Considering conventional boundary conditions, Chebyshev polynomials of the first kind are used as auxiliary shape functions. The formulation is developed within the framework of well-known Timoshenko and Reddy beam theories (TBT, RBT). Since the beams are simultaneously tapered and functionally graded, bending and shear stress pushover curves are presented to get a profound insight into the variation of stresses along the beam. The proposed formulations and solution scheme are verified through benchmark problems. In this context, excellent agreement is observed. Numerical results are included considering beams with various cross sectional types to inspect the effects of taper ratio and gradient index on deflections and stresses. It is observed that the boundary conditions, taper ratio, gradient index value and core to the thickness ratio significantly influence the stress and deflection responses.

An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models

  • Hadji, Lazreg;Zouatnia, Nafissa;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.231-241
    • /
    • 2019
  • In this paper, a new higher order shear deformation model is developed for static and free vibration analysis of functionally graded beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. Different patterns of porosity distributions (including even and uneven distribution patterns, and the logarithmic-uneven pattern) are considered. In addition, the effect of different micromechanical models on the bending and free vibration response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present higher-order shear deformation model, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain displacement, stresses and frequencies, and the numerical results are compared with those available in the literature. A comprehensive parametric study is carried out to assess the effects of volume fraction index, porosity fraction index, micromechanical models, mode numbers, and geometry on the bending and natural frequencies of imperfect FG beams.

MCVD법을 이용한 광섬유 모재의 제작 (Fabrication of Optical Fiber Preform by MCVD Method)

  • 이기완;홍봉식
    • 한국통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.307-320
    • /
    • 1989
  • 본 논문은 모재 제작을 위한 Modified Chemical Vapor Deposition(MCVD) 장치의 새로운 설계를 제안하였다. MCVD 공정의 기본 장치로는 선반장치와 원료가스공급 장치가 포함되고, 언덕형 광섬유 설계, 공정의 특성 및 MCVD 모재의 굴정율 형태를 측정하는 실험장치를 각기 실현하였다. 연구결과, 중심부 딥(dip)이나 범프(bump) 가 보이지 않는 이상적 언덕형 굴절율 광섬유 모재를 얻었다.

  • PDF

Applicability of the digital instrument to improve the reproducibility of motor unit number index

  • Ahn, Suk-Won
    • Annals of Clinical Neurophysiology
    • /
    • 제20권1호
    • /
    • pp.26-30
    • /
    • 2018
  • Background: The motor unit number index (MUNIX) and motor unit size index (MUSIX) refer to the electrophysiological measurement of the motor units using the surface electromyographic interference pattern (SIP) recorded during graded muscle contraction. In order to improve the reliability and reproducibility of MUNIX by the systematization of the graded muscle contractions, we applied a digital hand instrument to the procedure of recording SIP signals. Methods: We tested the applicability of the digital instrument in the MUNIX technique by assessing the mean values and the reproducibility of the MUNIX involving the abductor pollicis brevis (APB) and the abductor digiti minimi (ADM) muscles in 30 healthy adults. Results: The digital dynamometer was successfully applied to the MUNIX measurements of the APB and ADM muscles, and showed high reproducibility across trials. Conclusions: Application of the digital instrument would be useful in improving the reliability and reproducibility of MUNIX.

Vibroacoustic response of thin power law indexed functionally graded plates

  • Baij Nath Singh;Vinayak Ranjan;R.N. Hota
    • Steel and Composite Structures
    • /
    • 제50권3호
    • /
    • pp.299-318
    • /
    • 2024
  • The main objective of this paper is to compute the far-field acoustic radiation (sound radiation) of functionally graded plates (FGM) loaded by sinusoidally varying point load subjected to the arbitrary boundary condition is carried out. The governing differential equations for thin functionally graded plates (FGM) are derived using classical plate theory (CPT) and Rayleigh integral using the elemental radiator approach. Four cases, segregated on power-law index k=0,1,5,10, are studied. A novel approach is illustrated to compute sound fields of vibrating FGM plates using the physical neutral surface with an elemental radiator approach. The material properties of the FGM plate for all cases are calculated considering the power law indexes. An in-house MATLAB code is written to compute the natural frequencies, normal surface velocities, and sound radiation fields are analytically calculated using semi-analytical formulation. Ansys is used to validate the computed sound power level. The parametric effects of the power law index, modulus ratios, different constituent of FGM plates, boundary conditions, damping loss factor on the sound power level, and radiation efficiency is illustrated. This work is the benchmark approach that clearly explains how to calculate acoustic fields using a solid layered FGM model in ANSYS ACT. It shows that it is possible to asymptotically stabilize the structure by controlling the intermittent layers' stiffness. It is found that sound fields radiated by the elemental radiators approach in MATLAB, ANSYS and literatures are in good agreement. The main novelty of this research is that the FGM plate is analyzed in the low-frequency range, where the stiffness-controlled region governs the whole analysis. It is concluded that a clamped mono-ceramic FGM plate radiates a lesser sound power level and higher radiation efficiency than a mono-metallic or metal-rich FGM plate due to higher stiffness. It is found that change in damping loss factor does not affect the same constituents of FGM plates but has significant effects on the different constituents of FGM plates.