• Title/Summary/Keyword: google

Search Result 1,817, Processing Time 0.028 seconds

Development of YOLO-based apple quality sorter

  • Donggun Lee;Jooseon Oh;Youngtae Choi;Donggeon Lee;Hongjeong Lee;Sung-Bo Shim;Yushin Ha
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.415-424
    • /
    • 2023
  • The task of sorting and excluding blemished apples and others that lack commercial appeal is currently performed manually by human eye sorting, which not only causes musculoskeletal disorders in workers but also requires a significant amount of time and labor. In this study, an automated apple-sorting machine was developed to prevent musculoskeletal disorders in apple production workers and to streamline the process of sorting blemished and non-marketable apples from the better quality fruit. The apple-sorting machine is composed of an arm-rest, a main body, and a height-adjustable part, and uses object detection through a machine learning technology called 'You Only Look Once (YOLO)' to sort the apples. The machine was initially trained using apple image data, RoboFlow, and Google Colab, and the resulting images were analyzed using Jetson Nano. An algorithm was developed to link the Jetson Nano outputs and the conveyor belt to classify the analyzed apple images. This apple-sorting machine can immediately sort and exclude apples with surface defects, thereby reducing the time needed to sort the fruit and, accordingly, achieving cuts in labor costs. Furthermore, the apple-sorting machine can produce uniform quality sorting with a high level of accuracy compared with the subjective judgment of manual sorting by eye. This is expected to improve the productivity of apple growing operations and increase profitability.

Dose-Dependent Impacts of Omega-3 Fatty Acids Supplementation on Anthropometric Variables in Patients With Cancer: Results From a Systematic Review and Meta-Analysis of Randomized Clinical Trials

  • Seyed Mojtaba Ghoreishy;Sheida Zeraattalab-Motlagh;Reza Amiri Khosroshahi;Amirhossein Hemmati;Morvarid Noormohammadi;Hamed Mohammadi
    • Clinical Nutrition Research
    • /
    • v.13 no.3
    • /
    • pp.186-200
    • /
    • 2024
  • Meta-analyses have been conducted with conflicting results on this topic. Due to missing several eligible studies in previous meta-analysis by Lam et al., we conducted an extensive systematic review and dose-response meta-analysis of randomized controlled trials in this regard. A comprehensive search was conducted across various databases, including MEDLINE/PubMed, ISI Web of Knowledge, Scopus, and Google Scholar, until November 2023. Based on the analysis of 33 studies comprising 2,047 individuals, it was found that there was a significant increase in body weight for each 1 g/day increase in omega-3 lipids (standardized MD [SMD], 0.52 kg; 95% confidence interval [CI], 0.31, 0.73; I2 = 95%; Grading of Recommendations Assessment, Development and Evaluation [GRADE] = low). Supplementation of omega-3 fatty acids did not yield a statistically significant impact on body mass index (BMI) (SMD, 0.12 kg/m2; 95% CI, -0.02, 0.27; I2 = 79%; GRADE = very low), lean body mass (LBM) (SMD, -0.02 kg; 95% CI, -0.43, 0.39; I2 = 97%; GRADE = very low), fat mass (SMD, 0.45 kg; 95% CI, -0.25, 1.15; I2 = 96%; GRADE = low), and body fat (SMD, 0.30%; 95% CI, -0.90, 1.51; I2 = 96%; GRADE = very low). After excluding 2 studies, the findings were significant for BMI. Regarding the results of the dose-response analysis, body weight increased proportionally by increasing the dose of omega-3 supplementation up to 4 g/day. Omega-3 fatty acid supplementation can improve body weight, but not BMI, LBM, fat mass, or body fat in cancer patients; large-scale randomized trials needed for more reliable results.

Prevalence of Workplace Microaggressions and Racial Discrimination: A Systematic Review and Meta-analysis

  • Nader Salari;Ahoura Fattah;Amin Hosseinian-Far;Mojdeh Larti;Sina Sharifi;Masoud Mohammadi
    • Safety and Health at Work
    • /
    • v.15 no.3
    • /
    • pp.245-254
    • /
    • 2024
  • Background: In recent years, the rise of workplace racial discrimination and microaggressions has decreased the efficiency and productivity of organizations and institutions, and realization of organizational goals globally. Accordingly, it was decided to conduct a systematic review and meta-analysis in the present study with the aim of investigating the prevalence of microaggression and racial discrimination in the workplace. Methods: The PubMed, Scopus, Web of Science, ScienceDirect and Google Scholar databases were systematically searched for studies that had reported the effects of work stress among managers. The search did include a lower time limit and was conducted in June 2023. The heterogeneity of the studies was investigated using the I2 index, and accordingly random effects method was adopted for meta-analysis. Data analysis was conducted with the Comprehensive Meta-Analysis (v.2) software. Results: In the review of seven studies with a sample size of 2998 people, the overall prevalence of microaggression and racial discrimination in the workplace was found to be 73.6% and 18.8%, respectively. Publication bias within the selected studies was examined with the Egger's test, which indicated the absence of publication bias for the pooled prevalence of workplace microaggression (p: 0.264) and for the pooled prevalence of workplace racial discrimination (p: 0.061). Conclusion: The results obtained from this report indicate the high impact of micro-aggression and racial discrimination in the workplace. Considering the negative effects of such behaviours, the findings from this study will be helpful to managers and health policymakers.

  • PDF

The Effect of Invisible Cue on Change Detection Performance: using Continuous Flash Suppression (시각적으로 자각되지 않는 단서자극이 변화 탐지 수행에 미치는 효과: 연속 플래시 억제를 사용하여)

  • Park, Hyeonggyu;Byoun, Shinchul;Kwak, Ho-Wan
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.1
    • /
    • pp.1-25
    • /
    • 2016
  • The present study investigated the effect size of attention and consciousness on change detection. We confirmed the effect size of consciousness by comparing the condition which combined attention and consciousness and the condition of attention without consciousness. Then, we confirmed the effect size of attention by comparing the condition of attention without consciousness and the control condition which excluded attention and consciousness. For this purpose, change detection task and continuous flash suppression (CFS) were used. CFS renders a highly visible image invisible. In CFS, one eye is presented with a static stimulus, while the other eye is presented with a series of rapidly changing stimuli, such as mondrian patterns. The result is that the static stimulus becomes suppressed from conscious awareness by the stimuli presented in the other eye. We used a customized device with smartphone and google cardboard instead of stereoscope to trigger CFS. In Experiment 1-1, we reenacted some study to validate our experimental setup. Our experimental setup produced the duration of stimulus suppression that were similar to those of preceding research. In Experiment 1-2, we reenacted a study for attention without consciousness using an customized device. The results showed that attention without consciousness more strongly work as a cue. We think that it is reasonable to use CFS treatment employing smartphone and google cardboard for a follow-up study. In Experiment 2, when performing the change detection task, we measured the effect size of consciousness and attention by manipulating the consciousness level of cue. We used the method in which everything but the variable of interest kept being fixed. That way, the difference this independent variable makes to the action of the entire system can be isolated. We found that there was significant difference of correct response rate on change detection performance among different consciousness level of cue. In this study, we investigated that not only the role of attention and consciousness were different also we were able to estimated the effect size.

  • PDF

A Collaborative Filtering System Combined with Users' Review Mining : Application to the Recommendation of Smartphone Apps (사용자 리뷰 마이닝을 결합한 협업 필터링 시스템: 스마트폰 앱 추천에의 응용)

  • Jeon, ByeoungKug;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.1-18
    • /
    • 2015
  • Collaborative filtering(CF) algorithm has been popularly used for recommender systems in both academic and practical applications. A general CF system compares users based on how similar they are, and creates recommendation results with the items favored by other people with similar tastes. Thus, it is very important for CF to measure the similarities between users because the recommendation quality depends on it. In most cases, users' explicit numeric ratings of items(i.e. quantitative information) have only been used to calculate the similarities between users in CF. However, several studies indicated that qualitative information such as user's reviews on the items may contribute to measure these similarities more accurately. Considering that a lot of people are likely to share their honest opinion on the items they purchased recently due to the advent of the Web 2.0, user's reviews can be regarded as the informative source for identifying user's preference with accuracy. Under this background, this study proposes a new hybrid recommender system that combines with users' review mining. Our proposed system is based on conventional memory-based CF, but it is designed to use both user's numeric ratings and his/her text reviews on the items when calculating similarities between users. In specific, our system creates not only user-item rating matrix, but also user-item review term matrix. Then, it calculates rating similarity and review similarity from each matrix, and calculates the final user-to-user similarity based on these two similarities(i.e. rating and review similarities). As the methods for calculating review similarity between users, we proposed two alternatives - one is to use the frequency of the commonly used terms, and the other one is to use the sum of the importance weights of the commonly used terms in users' review. In the case of the importance weights of terms, we proposed the use of average TF-IDF(Term Frequency - Inverse Document Frequency) weights. To validate the applicability of the proposed system, we applied it to the implementation of a recommender system for smartphone applications (hereafter, app). At present, over a million apps are offered in each app stores operated by Google and Apple. Due to this information overload, users have difficulty in selecting proper apps that they really want. Furthermore, app store operators like Google and Apple have cumulated huge amount of users' reviews on apps until now. Thus, we chose smartphone app stores as the application domain of our system. In order to collect the experimental data set, we built and operated a Web-based data collection system for about two weeks. As a result, we could obtain 1,246 valid responses(ratings and reviews) from 78 users. The experimental system was implemented using Microsoft Visual Basic for Applications(VBA) and SAS Text Miner. And, to avoid distortion due to human intervention, we did not adopt any refining works by human during the user's review mining process. To examine the effectiveness of the proposed system, we compared its performance to the performance of conventional CF system. The performances of recommender systems were evaluated by using average MAE(mean absolute error). The experimental results showed that our proposed system(MAE = 0.7867 ~ 0.7881) slightly outperformed a conventional CF system(MAE = 0.7939). Also, they showed that the calculation of review similarity between users based on the TF-IDF weights(MAE = 0.7867) leaded to better recommendation accuracy than the calculation based on the frequency of the commonly used terms in reviews(MAE = 0.7881). The results from paired samples t-test presented that our proposed system with review similarity calculation using the frequency of the commonly used terms outperformed conventional CF system with 10% statistical significance level. Our study sheds a light on the application of users' review information for facilitating electronic commerce by recommending proper items to users.

A Study on Enhancing Personalization Recommendation Service Performance with CNN-based Review Helpfulness Score Prediction (CNN 기반 리뷰 유용성 점수 예측을 통한 개인화 추천 서비스 성능 향상에 관한 연구)

  • Li, Qinglong;Lee, Byunghyun;Li, Xinzhe;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.29-56
    • /
    • 2021
  • Recently, various types of products have been launched with the rapid growth of the e-commerce market. As a result, many users face information overload problems, which is time-consuming in the purchasing decision-making process. Therefore, the importance of a personalized recommendation service that can provide customized products and services to users is emerging. For example, global companies such as Netflix, Amazon, and Google have introduced personalized recommendation services to support users' purchasing decisions. Accordingly, the user's information search cost can reduce which can positively affect the company's sales increase. The existing personalized recommendation service research applied Collaborative Filtering (CF) technique predicts user preference mainly use quantified information. However, the recommendation performance may have decreased if only use quantitative information. To improve the problems of such existing studies, many studies using reviews to enhance recommendation performance. However, reviews contain factors that hinder purchasing decisions, such as advertising content, false comments, meaningless or irrelevant content. When providing recommendation service uses a review that includes these factors can lead to decrease recommendation performance. Therefore, we proposed a novel recommendation methodology through CNN-based review usefulness score prediction to improve these problems. The results show that the proposed methodology has better prediction performance than the recommendation method considering all existing preference ratings. In addition, the results suggest that can enhance the performance of traditional CF when the information on review usefulness reflects in the personalized recommendation service.

A Study on the Usage Behavior of Universities Library Website Before and After COVID-19: Focusing on the Library of C University (COVID-19 전후 대학도서관 홈페이지 이용행태에 관한 연구: C대학교 도서관을 중심으로)

  • Lee, Sun Woo;Chang, Woo Kwon
    • Journal of the Korean Society for information Management
    • /
    • v.38 no.3
    • /
    • pp.141-174
    • /
    • 2021
  • In this study, by examining the actual usage data of the university library website before and after COVID-19 outbreak, the usage behavior of users was analyzed, and the data before and after the virus outbreak was compared, so that university libraries can provide more efficient information services in a pandemic situation. We would like to suggest ways to improve it. In this study, the user traffic made on the website of University C was 'using Google Analytics', from January 2018 to December 2018 before the oneself of the COVID-19 virus and from January 2020 to 2020 after the outbreak of the virus. A comparative analysis was conducted until December. Web traffic variables were analyzed by classifying them into three characteristics: 'User information', 'Path', and 'Site behavior' based on metrics such as session, user, number of pageviews, number of pages per session time, and bounce rate. To summarize the study results, first, when compared with data from January 1 to January 20 before the oneself of COVID-19, users, new visitors, and sessions all increased compared to the previous year, and the number of sessions per user, number of pageviews, and number of pages per session, which showed an upward trend before the virus outbreak in 2020, increased significantly. Second, as social distancing was upgraded to the second stage, there was also a change in the use of university library websites. In 2020 and 2018, when the number os students was the lowest, the number of page views increased by 100,000 more in 2020 compared to 2018, and the number of pages per session also recorded10.46, which was about 2 more pages compared to 2018. The bounce rate also recorded 14.38 in 2018 and 2019, but decreased by 1 percentage point to 13.05 in 2020, which led to more active use of the website at a time when social distancing was raised.

Identification of Mesiodens Using Machine Learning Application in Panoramic Images (기계 학습 어플리케이션을 활용한 파노라마 영상에서의 정중 과잉치 식별)

  • Seung, Jaegook;Kim, Jaegon;Yang, Yeonmi;Lim, Hyungbin;Le, Van Nhat Thang;Lee, Daewoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.2
    • /
    • pp.221-228
    • /
    • 2021
  • The aim of this study was to evaluate the use of easily accessible machine learning application to identify mesiodens, and to compare the ability to identify mesiodens between trained model and human. A total of 1604 panoramic images (805 images with mesiodens, 799 images without mesiodens) of patients aged 5 - 7 years were used for this study. The model used for machine learning was Google's teachable machine. Data set 1 was used to train model and to verify the model. Data set 2 was used to compare the ability between the learning model and human group. As a result of data set 1, the average accuracy of the model was 0.82. After testing data set 2, the accuracy of the model was 0.78. From the resident group and the student group, the accuracy was 0.82, 0.69. This study developed a model for identifying mesiodens using panoramic radiographs of children in primary and early mixed dentition. The classification accuracy of the model was lower than that of the resident group. However, the classification accuracy (0.78) was higher than that of dental students (0.69), so it could be used to assist the diagnosis of mesiodens for non-expert students or general dentists.

Analysis of Behavioral Characteristics by Park Types Displayed in 3rd Generation SNS (제3세대 SNS에 표출된 공원 유형별 이용 특성 분석)

  • Kim, Ji-Eun;Park, Chan;Kim, Ah-Yeon;Kim, Ho Gul
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.2
    • /
    • pp.49-58
    • /
    • 2019
  • There have been studies on the satisfaction, preference, and post occupancy evaluation of urban parks in order to reflect users' preferences and activities, suggesting directions for future park planning and management. Despite using questionnaires that are proven to be affective to get users' opinions directly, there haven been limitations in understanding the latest changes in park use through questionnaires. This study seeks to address the possibility of utilizing the thirdgeneration SNS data, Instagram and Google, to compare behavior patterns and trends in park activities. Instagram keywords and photos representing user's feelings with a specific park name were collected. We also examined reviews, peak time, and popular time zones regarding selected parks through Google. This study tries to analyze users' behaviors, emerging activities, and satisfaction using SNS data. The findings are as follows. People using park near residential areas tend to enjoy programs being operated in indoor facilities and to like to use picnic places. In an adjacent park of commercial areas, eating in the park and extended areas beyond the park boundaries is found to be one of the popular park activities. Programs using open spaces and indoor facilities were active as well. Han River Park as a detached park type offers a popular venue for excercises and scenery appreciation. We also identified companionship characteristics of different park types from texts and photos, and extracted keywords of feelings and reviews about parks posted in $3^{rd}$ generation SNS. SNS data can provide basis to grasp behavioral patterns and satisfaction factors, and changes of park activities in real time. SNS data also can be used to set future directions in park planning and management in accordance with new technologies and policies.

A Case Study of Digital Media Usage Applied Experiential Elements - Focused on Beauty Brand Marketing - (체험적 요소가 적용된 디지털 미디어 활용 사례 연구 - 뷰티 브랜드 마케팅 중심으로 -)

  • Kim, Ah-rham;Kim, Bo-yeun
    • Journal of Communication Design
    • /
    • v.55
    • /
    • pp.240-249
    • /
    • 2016
  • This study focused on cases about user experience using digital media as a marketing. The recent convergence of various types of media is resulting in new types of content. In a situation where approaching consumers through digital and virtual means is no longer an alternative or an option but a necessity, customers must be influenced and stimulated using various types of digital media. Because modern consumers prefer to participate actively rather than to be passively exposed to information, there is a need to maximize and optimize the consumer's experience using digital media. In this research, consumer experiences that utilized digital media were examined, and these case studies were analyzed from an experiential marketing perspective. How the 5 different types of Experiential Marketing proposed by Bernd Schmitt and Digital medias were combined in the digital marketing campaigns was examined. The case studies analyzed in this research were chosen out of widely popular digital marketing campaigns ran by beauty brands that used various experimental marketing types, such as 'Make-up Genius' of L'Or?al, 'Google Glass Tutorials' of Yves Saint Laurent and 'Digital Runway Bar' of The Burberry Beauty Box. This study classified that case samples into paid media, earned media and owned media based on sense, feel, think, act and relate that are the strategic experiential modules of Bernd Schmitt. This study could be confirmed various customer experience as a sense, feel, think, act and relate through that cases using digital media technology and marketing element of digital media. Through the process of examining which digital media types each marketing campaign utilized and how these types of digital marketing were combined, this research is significant in that it helps for the understanding of the current state of digital marketing and in that it can serve as the foundation for future research of efficient digital marketing.