• Title/Summary/Keyword: gonadal maturation

Search Result 82, Processing Time 0.021 seconds

Reproductive Cycle and Gonadal Development of the Naked-Headed Goby, Favonigobius gymnauchen (Teleostei : Gobiidae) (날개망둑 (Faronigobius gymnauchen)의 생식주기 및 생식소 발달)

  • LEE Jung Sick;KIM Jae Won;KANG Ju-Chan;SHIN Yun Kyung;CHIN Pyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.3
    • /
    • pp.219-224
    • /
    • 2000
  • Reproductive biology of the naked-headed goby, Faronigobius gymnauchen was investigated by means of histological methods. The ovary was consisted of several ovarian lamellae and the oogonia originated from the inner surface of the ovarian lamella. The testis was seminiferous tubule One in internal structure. Seminiferous tubule was consisted of many testicular cysts which contained numerous germ cells in a same developmental stage. The size of group maturity was 4.5 cm intotal length. Gonadosomatic index(GSI) of the female and male was the highest in June and July, respectively. Reproductive cycle could be classified into the growing ($January{\~}March$), maturation ($April{\~}May$), ripe and spent (June{\~}July$), and recovery and resting ($August{\~}December$). Oocyte development was group-synchronous, and yolk nucleus was observed in the early growing oocyte.

  • PDF

The Control Mechanism of Gonadotropin-Releasing Hormone and Dopamine on Gonadotropin Release from Cultured Pituitary Cells of Rainbow Trout Oncorhynchus mykiss at Different Reproductive Stages

  • Kim, Dae-Jung;Suzuki, Yuzuru;Aida, Katsumi
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.379-388
    • /
    • 2011
  • The mechanism by which gonadotropin-releasing hormone (GnRH) and dopamine (DA) control gonadotropin (GTH) release was studied in male and female rainbow trout using cultured pituitary cells obtained at different reproductive stages. The mechanisms of follicle-stimulating hormone (FSH) release by GnRH and DA could not be determined yet. However, basal and salmon-type GnRH (sGnRH)- or chicken-II-type GnRH (cGnRH-II)- induced luteinizing hormone (LH) release increased with gonadal maturation in both sexes. LH release activity was higher after sGnRH stimulation than cGnRH-II stimulation at maturing stages in both sexes. The GnRH antagonist ([Ac-3, 4-dehydro-$Pro^1$, D-p-F-$Phe^2$, D-$Trp^{3,6}$] GnRH) suppressed LH release by sGnRH stimulation in a dose-dependent manner, although the effect was weak in maturing fish. The role of DA as a GTH-release inhibitory factor differs during the reproductive cycle: the inhibition of sGnRH-stimulated LH release by DA was stronger in immature fish than in maturing, ovulating, or spermiated fish. DA did not completely inhibit sGnRH-stimulated LH release, and DA alone did not alter basal LH release. Relatively high doses ($10^{-6}$ or $10^{-5}M$) of domperidone (DOM, a DA D2 antagonist) increased LH release, which did not change with reproductive stage in either sex. The potency of DOM to enhance sGnRH-stimulated LH release was higher in maturing and ovulated fish than in immature fish. These data suggest that LH release from the pituitary gland is controlled by dual neuroendocrine mechanisms by GnRH and DA in rainbow trout, as has been reported in other teleosts. The mechanism of control of FSH release, however, remains unknown.

Changes in Plasma Steroid Hormone Levels and Gonad Development by the Control of Photoperiods and Water Temperatures on Timing of Sexual Maturity of Rockfish (Sebastes schlegeli)

  • Baek Hea-Ja;Park Moo-Eog;Lee Young-Don;Kim Hyung-Bae;Rho Sum
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.1
    • /
    • pp.16-22
    • /
    • 2004
  • Plasma steroid hormone levels in the viviparous rockfish (Sebastes schlegeli) were examined in relation to gonadal histology under controlled photoperiods and water temperatures. To investigate those effects in S. schlegeli the photoperiod was maintained at 15L:9D in June and then it was gradually decreased to 9L: 15D in October. It was then gradually increased to 12L:12D in January, followed by 14L:I0D in February. The water temperature was $19-20^{\circ}C$ in July. From August to October, it was from $18^{\circ}C\;to\;12^{\circ}C$. Then, it was dropped to a low of $19-11^{\circ}C$ in November to December and then gradually increased to $14-15^{\circ}C$ in February. In females, both plasma $estradiol-l7\beta\;$ (E2) and testosterone (T) levels from August to February showed a similar pattern in both the treatment and the control groups. In the treatment group, the peaks of plasma E2 and T were observed in November, and the peaks were closely correlated to histological observations. Oocytes contained many yolk globules (final vitellogenic oocytes), and oocytes at the migratory nucleus stage increased in size. Plasma levels of progesterone did not change much throughout the experimental period. However, in the control group, the peaks of E2, T, and progesterone were observed in February. These results indicate that the controlled photoperiod and water temperature accelerated sexual maturity, corresponding to the advancement of plasma E2 and T peaks by approximately 3 months. In males, plasma T levels showed a similar pattern from August to October in the treatment and control groups, though levels in the treatment group were higher than those in the control group. From histological observations, the treatment group copulated one month earlier.

Studies on the Fishery Biology of Pomfrets, Pampus spp. in the Korean Waters 2. Gonadal Maturation and Spawning (한국근해 병어류의 자원생물학적 연구 2. 성숙과 산난)

  • LEE Taek Yuil;Jin Jong Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.22 no.5
    • /
    • pp.266-280
    • /
    • 1989
  • Gonadal maturation of the Korean pomfrets, Pampus echinogaster (Basilewsky) and Pampus argenteus (Euphrasen) were histologically investigated based on the samples captured in the East China Sea from January 1987 to December 1988. Gonadosomatic index (GSI) of P. echinogaster began to increase from March, and reached maximum between May and July. It began to decrease from July and reached mini-mum between August and February. P. argenteus had a similar cycle, however, P. argenteus has higher values in April than P. echinogaster. Hepatosomatic index (HSI) were positively related to GSI. HIS of P. echinogaster and P. argenteus reached maximum in $April\~July$ and $April\~August$, respectively, Fatness coefficient of two Pampus species were low in the summer, and high in the winter. Ovary is of saccular structure, and testis is of lobular structure. From February, the early oocyte (ca. $100\mu$ in diameter grows) rapidly at the germinal epithelium of ovarian sacs. From March to April the oocytes grew up to cu $400\~500\mu$ in diameter. At this stage, the yolk globules are accumulated rapidly in the cytoplasmic layer. From May, the oocytes roached ca. $650\~850\mu$ in diameter, and they are spawned in $May\~July$. After spawning the residual follicles and remained ripe eggs degenerate. From February, spermatogonia grows into spermatocyte on the epithelium of the testicular lobuli. From May, spermatozoa appeared and spawning occurs. After spawning, the epithelium is thickened and the remained spermatozoa degenerate. Annual reproductive cycle of two Pampus species could be divided into four successive stages: Growing stage ($March\~April$), Mature stage ($April\~May$), Ripe and spent stage ($June\~July$) and Recovery and resting stage ($August\~January$). Absolute fecundity of P. echinogaster was $9,441\~135,294$, and that of P. argenteus was $50,678\~221,894$. Absolute fecundity of two Pampus species were positively related to body length and total weight. Relative fecundity was positively related to body length, while it was reversely related to total weight. The increasing rate of absolute fecundity of P. echinogaster was lower than P. argenteus. In P. echinogaster half of female and male reached first maturity at body length of $15.0\~$17.9cm and $12.0\~14.9cm$, respectively. All of females and males reached first maturity at body length of $18.0\~20.9cm$ and $21.0\~23.9cm, respectively. In P. argenteus all of females and males reached first maturity at body length of 18.6cm and 16.7cm$, respectively.

  • PDF

Reproductive Cycle of the Cultured Scallop, Patinopecten yessoensis in Eastern Waters of Korea (동해안 양식산 참가리비, Patinopecten yessoensis의 생식주기)

  • 장영진;임한규;박영제
    • Journal of Aquaculture
    • /
    • v.10 no.2
    • /
    • pp.133-141
    • /
    • 1997
  • Gonadal maturation and annual reproductive cycle of the cultured scallop, Patinopecten yessoensis from eastern waters near of Kangwon-do province, Korea were studied on the basis of monthly variation of gonadosomatic indices (GSI) and histological observations of gonadal tissue. During the experimental period, water temperature at the depth of 20m and sunshine duration per day were ranged from $5.3^{\circ}C\;to\;18.0^{\circ}C$ and 9.4 to 14.6 hours, respectively. GSI values of femal were in a wide range from $2.8\pm0.37(August)\;to\;22.66\pm4.38(April)$. GSI values began to increase in March and reached the maxium in April, then decreased repidly. GSI values of male were in a range from $2.04\pm0.80(August)\;to\;20.46\pm1.49(April)$ and were same tendency with female's. Digestive diverticula indices (DDI) of both sex reached the maximum values in December, then deceased gradually until September. Contrary to GSI, adductor muscle indices (AMI) of both sex were the minium values in April, but began to increase rapidly until July and reached $47.71\pm3.17(female)\;and\;48.70\pm3.55(male)$. In the scallp collected hermaphroditic gonads were found. Monthly changes of oocyte diameter were in a range from 11.3 um(October) to 73.3um (April) and nuclear diameters were in a range from 8.3um (September) to 35.3um (April), similar tendency with each other. The changes in number of ovarian tubules were reciprocal tendency with those of oocyte diameter and monthly number of ovarian tubules per $\textrm{mm}^2$ in the tissue perpatation was in a range from 51 (April) to 175 (August). As the results, the annual reproductive cycle of the cultured scallolp from eastern waters of Korea could be classified into five successive stages : multiplicative (October), growing (November to February), mature (March and April), spawning (April to June) and recovery (July to September) in female ; multiplicative (October and November), growing (December and January), mature (February to April), spawning (April to June) and recovery (July to September) in male.

  • PDF

Reproductive Ecology of the Bladder Moon, Glossaulax didyma (Gastropoda: Naticidae) in Western Korea (한국 서해산 큰구슬우렁이, Glossaulax didyma (복족강: 구슬우렁이과) 의 번식생태)

  • Kim, Dae-Gi;Chung, Ee-Young;Shin, Moon-Seup;Hwang, Kyu
    • The Korean Journal of Malacology
    • /
    • v.23 no.2
    • /
    • pp.189-198
    • /
    • 2007
  • The reproductive cycle, egg capsules in the egg-mass, first sexual maturity, and sex ratio of the bladder moon, Glossaulax didyma ($R\ddot{o}ding$) were investigated. The gastropods collected from the intertidal zone of Biin Bay, Seocheon, Korea were studied by using histological analysis and morphometric data. The gonadosomatic index (GSI) of females and males began to increase in March and reached maximum in May. Then their values sharply decreased from late in May to August due to spawning. The condition index (CI) began to increase in February and reached maximum in May, then gradually declined in the spawning period. The CI calculated for determination of the spawning period was coincided with changes in the GSI and gonadal phases. Spawning occurred between late in May to August in females and early in May to August in males. Spawning peak was observed between July and August when the seawater temperature rose to 19 $^{\circ}C$. Reproductive cycle with the gonadal development phases of this species can be divided into five successive stages in females and four in males: in females, early active stage (December to February), late active stage (February to March), ripe stage (April recovery stage (August to November); in males, active stage (December to March), ripe stage (March to July), copulation stage (early May to August), and recovery stage (August to January). Fully matured oocytes were approximately 250-270 ${\mu}m$ in size. The egg-mass was a hat in shape, and a number of egg capsules were found in an egg-mass. An egg capsule was 0.53-0.57 mm in size. An embryo (veliger larva) hatched from an egg capsule. Percentage of first sexual maturity in females and males were over 50% for individuals that are 40.1-45.0 mm in shell radius, and 100% for those that are over 45.1 mm. The sex ratio of female to male was significantly different from 1:1 $(x^2\;=\;57.22,\;p\;<\;0.05)$.

  • PDF

Sexual Maturation of the Turban Shell, Lunella coronata coreensis (Gastropoda: Turbinidae), on the West Coast of Korea (눈알고둥 (Lunella coronata coreensis)의 성 성숙)

  • LEE Ju Ha
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.6
    • /
    • pp.533-540
    • /
    • 2000
  • Gonadal development, gametogenesis, reproductive cycle, gonad index, flesh weight rate, and first sexual maturity of the turban shell, Lunella coronata coreensis were investigated by histological observation. The materials used were collected monthly from the rocky intertidal zone of Daehang-ri, Buan-gun, Jeollabuk-do, on the west coast of Korea, from July 1998 to June 1999. Sex of L coronata coreensis was separate. The gonad was widely located in the spirals of the visceral mass buried in the digestive gland. The ovary and testis were composed of a number of oogenic follicles and speymatogenic follicles, respectively. Monthly variations in the gonad index increased from March ($23.86{\pm}3.73$) when the water temperature increased and reached the maximun in July ($49.76{\pm}6.47$). And then, the gonad index sharply decreased in September ($15.58{\pm}2.33$). The flesh weight rate ranged from $25.2{\%}$ to $32.3{\%}$, and its variation showed a similar pattern to the gonad index. Individuals $<5.9 mm$ in shell height could not take part in reproduction in both sexes. Percentages of first sexual maturity of female and male specimens ranging from $7.0{\~}7.9 mm$ in shell heights were $84.6{\%}\;and\;91.7{\%}$, respectively, and $100{\%}$ in those over 8.0 mm in shell height in both sexes took part in reproduction. By studying the monthly changes of the morphological features and sizes of germ cells during gametogenesis in the gonad, the reproductive cycle of this species could be devided into five successive stages: early active (December to April), late active (January to July), ripe (May to August), spawning (July to September), and recovery (September to March). The spawning period of this species was once a year between July and September, and the main spawning occurred in July when the seawater temperature reached above $24.8^{\circ}C$. The fully ripe eggs were $150{\~}160\;{\mu}m$ in diameter.

  • PDF

Effects of Photoperiod and Temperature on the Gonadal Activity in Small Filefish, Rudarius ercodes (그물코쥐치, Rudarius ercodes의 생식활동에 미치는 광주기 온도 영향)

  • LEE Taek Yuil;HANYU Isao;FURUKAWA Kiyoshi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.6
    • /
    • pp.523-528
    • /
    • 1984
  • The small filefish, Rudarius ercodes, generally spawning from mid May to early October in the natural habitat, was exposed to various photoperiod and temperature regimes. These environmental effects on the gonad activity, regression and recrudescence were experimentally investigated based on the mechanism of reproductive cycle. Spawning season was initiated in the early spring with the gonad activated by long photoperiod(13L) and stimulated by compensatory temperature rising. Even when the gonad activated readily at the above critical daylength (12L to 13L)was kept back at the below if, it went on maturing. At the end of spawning period (mid September), since the shortening of daylength (12L) resulted in the gonad regression regardless of temperature, the short daylength might be related to the termination of spawning in situ. When the regressive gonad at the post spawning period was treated by the above 13L: $20^{\circ}C$ condition, it could recrudesce and bring forth even spawning. From this fact, the feasible control of annual reproductive cycle of small filefish was recognized. But even in the long daylength, the temperature above $28^{\circ}C$ was preventive of gonad maturation.

  • PDF

Reproduction and Embryonic Development within the Maternal Body of Ovoviviparous Teleost, Sebastes inermis (란태생 경골어류 볼락, Sebastes inermis의 생식과 체내자어발달)

  • LEE Taek-Yuil;KIM Sung-Yeon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.5
    • /
    • pp.413-431
    • /
    • 1992
  • Gonadal development, fertilization and egg development in the maternal body and reproductive cycle of ovoviviparous rockfish, Sebastes inermis, were investigated histologically. Gonadosomatic index(GSI) of male and female were increased from September and reached maximum values in December. In the male, GSI decreased from January, but in the female maintained high values till February and decreased from March. Hepatosomatic index(HSI) was related to GSI conversely. In both sex, HSI increased from February and reached maximum in August as the gonad were degenerating and resting, and began to decrease from September as gonad were glowing. This ovoviviparous rockfish copulates in December. Fertilization with sperms maintained between ovulated oocytes in the ovary occurs in January mainly. Egg development in the ovarian cavity and discharging of hatched preiarva occurs from January to February. The reproductive cycle includes the successive stages: Growing(September), Mature (October-November), Ripe and Fertilization(Decembr-Janua), Egg development and Discharging of hatched larva(January-February), Degeneration and Resting(February-August). According to the frequency distribution of egg diameter and histological observation, the ovoviviparous rockfish discharged the prelarva at a time in a spawning season. The sexual maturation is first attained at 2 ages. All females and males reaches first maturity at body length of 17.1cm and 15.1cm respectively. The mean number of the embryos increased with the increase of the total length of female.

  • PDF

Neuropeptide Y like Substance Distributed in the Brain Tissues of Two Rockfish Species, Sebastes oblongus and S. schlegeli (황점볼락과 조피볼락의 뇌 조직에 분포하는 neuropeptide Y성 물질)

  • SOHN Young Chang;CHANG Young Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.4
    • /
    • pp.383-391
    • /
    • 1995
  • In order to find out the distribution of neuropeptide Y (NPY) recently known as the gonadotropin (GtH) stimulation neurohormone in the brain tissues of marine teleost, detection and localization of NPY like substance in brain of two rockfish species, Sebastes oblongus and S. schlekeli were done by immunohistochemisty. Distribution of GtH cells in hypophysis were also observed by aldehyde fuchsin (AF)-fast green-orange G stain to compare with gonadal phases of the rockfish species. NPY immunoreactive cells were detected in olfactory bulb, telencephalon and mesencephalon of the brain, and NPY immunoreactive fibers were distributed not only in olfactory bulb, telencephalon and mesencephalon but also in optic nerve, hypothalamus and optic tectum. Regardless of ovarian maturation in two rockfish species, NPY immunoreactive fibers were observed in the neurohypophysis adjacent to the AF negative cells in the rostral pars distalis of hypophysis in both species. Moreover, the fibers were distributed in the rostral and proximal pars distalis near to the GtH cells of the hypophysis in both species possessing the growing or mature oocytes. Slight AF stainable GtH cells were detected in hypophysis of two species before parturition (S. oblongus) and in mature stage (S. schlegeli), but AF stainability of the cells in the proximal pars distalis after parturition was more increased than that of the cells Tn mature stage or before parturition. The size and nucleus diameter of GtH cells in S. oblongus and S. schlegeli before parturition were significantly bigger than those of GtH cells in individuals after parturiton (S. oblongus) or with resting ovary (S. schlegeli) (P<0.01).

  • PDF