• Title/Summary/Keyword: golf swing motion

Search Result 74, Processing Time 0.027 seconds

Design and Implementation of the Golf Swing Analysis System through Captured Motion Picture (골프 동작 분석을 위한 동영상 편집시스템 설계 및 구현)

  • Park, Young-Bom
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.453-458
    • /
    • 2002
  • It is not easy to analyze dynamic sports motion, but it can be done easily by using an interactive playback of the recorded motion. Everybody is able to capture a golf swing owing to the popularization of PC and digital camcorder in these days. In this study, the system that can provide golf swing analysis is selected and implemented. Furthermore, editing method that can represent motion is applied and moving object tracking algorithm that can make this profess easy is applied to provide easy golf swing analysis.

Kinematical Analysis of Pitching wedge swing motion in University Golfer (대학 골프 선수의 Pitching wedge 스윙동작의 운동학적 특성 분석)

  • Back, Jin-Ho;Yoon, Dong-Seob;Kim, Jae-Phil
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.133-149
    • /
    • 2003
  • The purposes of present study were to determine the major check-points of golf swing from the review of previous studies, and to suggest additional information on the teaching theory of golf. The golf swing motion of 6 male and female elite university golf players were filmed with 16mm Locam II high speed cameras at the speed of 200f/s, and variables such as time, displacement, angle, velocity were calculated and analyzed by 3D Cinematography using DLT method. The results were: 1. Differences were shown in the ratio of weight distribution on the feet, cocking angle, take-back velocity, club-head velocity at impact depending upon the physical characteristics and club used for swing. 2. Time for the down-swing and impact were $0.27{\sim}0.29s$ in men and $0.29{\sim}0.32s$ in women, which was 1/3 of the time for the back-swing. Women showed longer total swing time than men because of longer time in back-swing, follow-through and finish. 3. Men showed larger range of motion in shoulder and knee joints than women, on the other hand women showed larger range of motion in hip joint than men. 4. Cocking motion and right elbow flexion were occurred at the top of back-swing and cocking release was occurred at the moment of impact. Maximum rotations of shoulder and hip joints were found between the top of back-swing and down-swing phase. 5. Women showed lower back-swing velocity than men, and men showed higher club velocity(men: $38.2{\sim}38.6m/s$, women: $35.1{\sim}36.4m/s$) than women.

Evaluation Method for Fit of Golf wears based on 3D Motion Analysis - Focus on motion range of upper body - (3차원 동작분석법을 활용한 골프웨어 평가를 위한 기초연구 - 상체 동작범위를 중심으로 -)

  • Chung, Hye-Won;Shin, Ju-Young Annie;Nam, Yun-Ja
    • Fashion & Textile Research Journal
    • /
    • v.18 no.3
    • /
    • pp.338-350
    • /
    • 2016
  • The purpose of this study is to analyze joint angle for a range of swing motion derived through 3D motion analysis in order to design the ergonomic golf wear, use it for evaluation method of apparel fit to improve exercise functionality and provide the basic materials necessary for designing clothes. In order to do this, the subjects for this study were 3 men of age 20s. The data for a range of motion of golf swing were collected by using equipment for 3D motion analysis and then were used for analysis of joint angles and evaluation method of apparel fit. Range of motion was derived through 3D motion analysis of golf swing motion and joint angles for items of joint motion item and of X, Y, and Z-axis were calculated, respectively. In order to set the evaluation questions for evaluation of apparel fit, to find a range of motion at the maximal value and the minimal value of swing motion. As a result, during the swinging motion, neck extension, right shoulder extension, right/left elbow extension, right/left elbow supination did not appear. Items of joint motion showing the maximum at range of each swing motion were applied into 55 questions and consisted. The results of this study were meaningful as a basic study to apply 3D motion analysis to the fashion industry. It's expected to be used to design functional clothing.

Development of Standard Golf Swing Motion Modeling System (골프 표준 스윙 자세 구현 시스템 개발)

  • 이지홍;조복기;김기웅;심형원;유병욱
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.121-124
    • /
    • 2002
  • This paper explains the system which finds the data of the joint of Wire Frame(that express the body structure of the golfer) from standard golf swing movie. Also, this paper used interpolation and the method which modify the distance between a joint and a close joint to general new joint data. Last this paper explains the system that make a standard golf swing attitude by continuous display the static attitude(which are formed with Wire Frame) of golf swing operations.

  • PDF

Kinematic and Kinetic Analysis of the Soft Golf Swing using Realistic 3D Modeling Based on 3D Motion Tracking

  • Kim, Yong-Yook;Kim, Sung-Hyun;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.744-749
    • /
    • 2007
  • Kinematic and kinetic analysis has been performed for Soft Golf swings utilizing realistic three dimensional computer simulations based on three dimensional motion tracking data. Soft Golf is a newly developed recreational sport in South Korea aimed to become a safe and easy-to-learn sport for all ages. The advantage of Soft Golf stems from lighter weight of the club and much larger area of the sweet spot. This paper tries to look into kinematic and kinetic aspects of soft golf swings compared to regular golf swing and find the advantages of lighter Soft Golf clubs. For this purpose, swing motions of older aged participants were captured and kinematic analysis was performed for various kinematic parameters such as club head velocity, joint angular velocity, and joint range of motions as a pilot study. Kinetic analysis was performed by applying kinematic data to computer simulation models constructed from anthropometric database and the measurements from the participants. The simulations were solved using multi-body dynamics solver. Firstly, the kinematic parameters such as joint angles were obtained by solving inverse dynamics problem based on motion tracking data. Secondly, the kinetic parameters such as joint torques were obtained by solving control dynamics problem of making joint torque to follow pre-defined joint angle data. The results showed that mechanical loadings to major joints were reduced with lighter Soft Golf club.

Implementation of Golf Swing Accuracy Analysis System using Smart Sensor (스마트 센서를 활용한 골프 스윙 정확도 분석시스템 구현)

  • Ju, Jae-han
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.200-205
    • /
    • 2017
  • Modern sports are developing into sports science that incorporates science and various analytical simulation systems for improving records are being developed, and they are helping to improve actual game records. Therefore golf which is one of various sports events, has been popularized among the hobbyists and the general public and there is an increasing demand for correcting the movement attitude of the person. In response to these demands, many systems have been developed to analyze and correct golf swing postures. The golf swing accuracy analysis system analyzes the moments that can not be seen with the naked eye and guides them to understand easily. It can improve the golf swing motion through immediate feedback due to the visual effect. Using the knowledge of golf swing motion collected from golf swing video, we improved reliability. In addition, it provides the ability to visually check and analyze your golf swing video, allowing you to analyze each segment based on various golf swing classification methods.

Implementation of Golf Swing Analysis System Based on Swing Trajectories Analysis

  • Kim, Ho-Han;Kim, Sung-Young
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.2
    • /
    • pp.65-74
    • /
    • 2019
  • In this paper, we describe a new swing analysis system. We design this system to provide various information about golf swings and to help to correct wrong swings. We visualize three-dimensional skeletal information obtained from Kinect through various views. Golfers can see their swing behavior through these views. This system can calculate the similarity between the two trajectories obtained from Kinect to determine the similarity of swing trajectories of different golfers. Input trajectories are resampled to have equal spacing and are performed scaling and translation for accurate trajectory comparison. We have verified the usefulness of the proposed system through various analyzes.

Implementation of Pseudo Golf Club and Virtual Golf Simulation System

  • Min, Meekyung;Kim, Kapsu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.121-127
    • /
    • 2018
  • In this study, we propose a pseudo golf club which can sense user's swing motion and virtual golf simulation system using the pseudo golf club. The proposed system is a virtual golf simulation system of a complex play type in which a player can enjoy various types of golf play according to the user's taste by providing a play mode for hitting an actual golf ball and a play mode for swinging the pseudo golf club. This virtual golf play system calculates and displays the trajectory of a golf ball by a simulator just like playing a real golf, and suggests suitable swing motion, so it helps users to learn golf easily.

Biomechanical Analysis of Golf Driver Swing Motion According to Gender

  • Bae, Kang Ho;Lee, Joong Sook;Han, Ki Hoon;Shin, Jin Hyung
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Objective: The purpose of this study is to investigate the differences in biomechanical variables of golf driving motion according to gender. Method: A total of 21 healthy golfers (11 men and 10 women) who have more than 5 years of professional experience and have been registered in the Korea Golf Association was recruited. A 250-Hz 8-camera motion capture system (MX-T20, Vicon, LA, USA) was used to capture the motion trajectories of a total of 42 reflective markers attached to the golfer's body and club. Moreover, two 1,000-Hz AMTI force plates (AMTI OR6-7-400, AMTI, MA, USA) were used to measure the ground reaction force. The mean and standard deviation for each parameter were then calculated for both groups of 21 subjects. SPSS Windows version 23.0 was used for statistical analysis. The independent t-test was used to determine the differences between groups. An alpha level of .05 was utilized in all tests. Results: There were differences in joint angles according to gender during golf driver swing. Men showed a statistically significantly higher peak joint angle and maximum range of angle in sagittal and frontal axis of the pelvis, hip, and knee. Moreover, women's swing of the pelvis and hips was found to have a pattern using the peak joint angle and range of angle in the vertical axis of the pelvis and hip. There were the differences in peak joint moment according to gender during golf driver swing. Men used higher joint moment in the downswing phase than women in the extensor, abductor, and external rotator muscles of the right hip; flexor and adductor muscles of left hip joint; and flexor and extensor muscles of the right knee. Conclusion: This result reveals that male golfers conducted driver swing using stronger force of the lower body and ground reaction force based on strength of hip and thigh than female golfers.