• Title/Summary/Keyword: golf course

Search Result 303, Processing Time 0.027 seconds

A Three-year Study on the Leaf and Soil Nitrogen Contents Influenced by Irrigation Frequency, Clipping Return or Removal and Nitrogen Rate in a Creeping Bentgrass Fairway (크리핑 벤트그라스 훼어웨이에서 관수회수.예지물과 질소시비수준이 엽조직 및 토양 질소함유량에 미치는 효과)

  • 김경남;로버트쉬어만
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.2
    • /
    • pp.105-115
    • /
    • 1997
  • Responses of 'Penncross' creeping bentgrass turf to various fairway cultural practices are not well-established or supported by research results. This study was initiated to evaluate the effects of irrigation frequency, clipping return or removal, and nitrogen rate on leaf and soil nitrogen con-tent in the 'Penncross' creeping bentgrass (Agrostis palustris Huds.) turf. A 'Penncross' creeping bentgrass turf was established in 1988 on a Sharpsburg silty-clay loam (Typic Argiudoll). The experiment was conducted from 1989 to 1991 under nontraffic conditions. A split-split-plot experimental design was used. Daily or biweekly irrigation, clipping return or removal, and 5, 15, or 25 g N $m-^2$ $yr-^1$ were the main-, sub-, and sub-sub-plot treatments, respectively. Treatments were replicated 3 times in a randomized complete block design. The turf was mowed 4 times weekly at a l3 mm height of cut. Leaf tissue nitrogen content was analyzed twice in 1989 and three times in both 1990 and 1991. Leaf samples were collected from turfgrass plants in the treatment plots, dried immediately at 70˚C for 48 hours, and evaluated for total-N content, using the Kjeldahl method. Concurrently, six soil cores (18mm diam. by 200 mm depth) were collected, air dried, and analyzed for total-N content. Nitrogen analysis on the soil and leaf samples were made in the Soil and Plant Analyical Laboratory, at the University of Nebraska, Lincoln, USA. Data were analyzed as a split-split-plot with analysis of variance (ANOVA), using the General Linear Model procedures of the Statistical Analysis System. The nitrogen content of the leaf tissue is variable in creeping bentgrass fairway turf with clip-ping recycles, nitrogen application rate and time after establishment. Leaf tissue nitrogen content increased with clipping return and nitrogen rate. Plots treated with clipping return had 8% and 5% more nitrogen content in the leaf tissue in 1989 and 1990, respectively, as compared to plots treated with clipping removal. Plots applied with high-N level (25g N $m-^2$ $yr-^1$)had 10%, 17%, and 13% more nitrogen content in leaf tissue in 1989, 1990, and 1991, respectively, when compared with plots applied with low-N level (5g N $m-^2$ $yr-^1$). Overall observations during the study indicated that leaf tissue nitrogen content increased at any nitrogen rate with time after establishment. At the low-N level treatment (5g N $m-^2$ $yr-^1$ ), plots sampled in 1991 had 15% more leaf nitrogen content, as compared to plots sampled in 1989. Similar responses were also found from the high-N level treatment (25g N $m-^2$ $yr-^1$ ).Plots analyzed in 1991 were 18% higher than that of plots analyzed in 1989. No significant treatment effects were observed for soil nitrogen content over the first 3 years after establishment. Strategic management application is necessary for the golf course turf, depending on whether clippings return or not. Different approaches should be addressed to turf fertilization program from a standpoint of clipping recycles. It is recommended that regular analysis of the soil and leaf tissue of golf course turf must be made and fertilization program should be developed through the interpretation of its analytic data result. In golf courses where clippings are recycled, the fertilization program need to be adjusted, being 20% to 30% less nitrogen input over the clipping-removed areas. Key words: Agrostis palustris Huds., 'Penncross' creeping bentgrass fairway, Irrigation frequency, Clipping return, Nitrogen rate, Leaf nitrogen content, Soil nitrogen content.

  • PDF

Development and Characteristics of New Cultivar 'Green Ever' in Zoysiagrass (한국잔디 신품종 '그린에버'의 개발 및 특성)

  • Tae, Hyun-Sook;Hong, Beom-Seok;Shin, Chong-Chang;Jang, Gong-Man;Kim, Kyung-Duck;Park, Dae-Sup
    • Weed & Turfgrass Science
    • /
    • v.3 no.4
    • /
    • pp.329-335
    • /
    • 2014
  • This study was performed to study characteristics of new zoysiagarass cultivar 'Green Ever' (Plant Variety Protection Application no. 2014 - 02). 'Green Ever' was developed by selection breeding among 100 native zoysiagrasses collected in South Korea. 'Green Ever' showed specific bands (1.48 kb with OPC14 and 1.05 kb with OPD5) which were distinct from 'Anyang Joonggi' or 'Dongrae Koryogi' in RAPD analysis. 'Green Ever' was classified as Z. matrella in morphological evaluations including plant height ($6.8{\pm}0.5cm$), leaf width ($2.0{\pm}0.1mm$), height of lowest leaf ($1.9{\pm}0.1cm$) and seed length ($3.0{\pm}0.1mm$), which was similar with morphological characteristics of 'Dongrae Koryogi'. Turf quality, shoot density and chlorophyll content of 'Green Ever' were higher than them of 'Anyang Joonggi' and 'Dongrae Koryogi' under intensive management such as fairway on golf course, especially shoot densities of 'Green Ever' were excellent higher than 'Anyang Joonggi' and 'Dongrae Koryogi' during experimental periods. It could be extensively used in fairway, teeing ground of golf courses and landscape garden after further study about various environmental adaptabilities such as winter kill, wear tolerance etc.

The Effect of Thatch Decomposing by Application with Composted Liquid Manure and Microorganism Medium in Golf Course Soil (배양미생물과 가축분뇨발효액비의 시비가 골프코스 토양 중 대취분해에 미치는 영향)

  • Ham, Suon Kyu;Lim, Ji Yeon;Lee, Yeong Min
    • Weed & Turfgrass Science
    • /
    • v.3 no.4
    • /
    • pp.342-346
    • /
    • 2014
  • The purpose of this experiment is for investigating how much the amino acid liquid fertilizer and composted liquid manure, culture microorganism effect on the breeding of grasses and knowing the extent of the thatch content through an analysis of the soil. For testing about soil chemical, the quality of grasses, and the extent of the thatch content in the soil, we cultivated 6 kinds of microorganisms having the effect of thatch dissolution and sprayed these 6 microorganisms with composted liquid manure and the amino acid liquid fertilizer on the place Creeping bentgrass have planted. This conduction started from June to October, 2012 and 2013 (The interval: 2 weeks). In the result of the turf growth, there is no big difference between soil chemical and trace element. And we can know Leaf Color Index, Chlorophyll Index and Root Length are almost same as among treatment. In conclusion, the mixing fertilization of culture microorganism and composted liquid manure is better effective than the traditional fertilization. And it can be expected the effect of the quality of grass and Thatch decomposition in soil.

Change of Soil Physicochemical Properties by Mixed Ratio of 4 Types of Soil Amendments Used in Golf Course (골프장에 사용되는 4가지 토양개량제들의 혼합비율에 따른 토양이화학성의 변화)

  • Kim, Young-Sun;Ham, Suon-Kyu;Lim, Hye-Jung
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.2
    • /
    • pp.205-210
    • /
    • 2010
  • This study was conducted to investigate the effect of the mixed ratio of the soil amendments, peat, humate, peatmoss and zeolite, on the soil physicochemical properties. The mixed ratios of soil amendments were 0%, 3%, 5%, 7% and 10% (v/v) incorporated with sand which met to the USGA (United State of Golf Association) recommendation. It was measured pH, EC and CEC as a chemical properties. Porosity, capillary porosity, air-filled porosity, bulk density and hydraulic conductivity were also measured to analyze the changes of physical properties. Chemical properties were significantly different by mixture ratios of peat, humate, peatmoss and zeolite. When the results were applied to the USGA standard of the soil physical properties, the optimum mixture ratios of peat, humate and peatmoss were 5%, 3% and 7%, respectively. Air-filled porosity was factor involved in soil physical properties by blending with soil amendments and it was affected on volume of porosity and hydraulic conductivity. To analyze the corelation of mixture ratio versus to physical characters, the ratio of peat and peatmoss was significantly related to capillary porosity and hydraulic conductivity (P<0.05), that of humate hydraulic conductivity (P<0.01), and that of zeolite air-filled porosity and volume of porosity (P<0.05). These results could be used as a basic data for construction USGA sand green.

Evaluating Various Nitrogen Sources for Divot Recovery on Creeping bentgrass (Creeping bentgrass의 생육과 디봇피해 회복을 위한 질소의 유형별 효과)

  • Lee, Sang-Kook
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.2
    • /
    • pp.135-139
    • /
    • 2012
  • Creeping bentgrass (Agrostis stolonifera) is one of the most popular turfgrasses for high-quality playing surface such as putting green on golf courses and athletic fields. Continues damage such as divot injury on creeping bentgrass is major issue to maintain golf course properly. Although plentiful researches to maximize divot resistance have been reported, minimal research has focused on relation between nitrogen (N) sources and divot resistance. The study was conducted to determine the effect of N source for turfgrass divot recovery and overall tee performance. Eleven fertilizer treatments as N sources were applied to creeping bentgrass 'Penncross'. Before the first application, divot injuries were simulated by removing a core of soil and turfgrass from established plots and backfilling with native soil. Data collection included turfgrass color and quality. N release speed did not influenced divot recovery. Frequency of urea application had no effects on divot recovery. Urea with split application had no difference with no treatment for divot recovery. Polyon product especially polyon mini (41-0-0) had the best performance for divot recovery and for maintaining better turfgrass quality. Overall, small particle size of slow-release N form would influence creeping bentgrasss to recover divot damage.

Analysis of Research Trend on Zoysiagrass (Zoysia spp.) (한국 잔디류의 연구동향 분석)

  • Hyun, Yun-Hea;Choi, Byeong-Jin;Kim, Yoon-Joong;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.2
    • /
    • pp.89-95
    • /
    • 2012
  • Korean lawn grass, which belongs to Zoysia genus in Gramineae family, is one of the major turfgrass which is widely adapted to its native niches in the temperate region of the north east Asia through tropical regions including Philippine, Thailand and Australia. The Turfgrass Information Center' database provides 5,340 descriptive records including 638 referred papers and 1,370 technical reports concerning 'Zoysia'. The database focused on researches on golf courses and lawn care industries. The researches provide informations on seed technology and use of plant protectant for pest management in turf management industries. The purpose of this study is to analyze and classify the research contents of zoysiagrasses which have been published in Korean journals. The total number of research papers published in Korean journals were 274 including 102, 38, and 134 in the 'Botanical', 'Environmental' and 'Cultural' researches, respectively. Publication in foreign journals by Korean investigators were not counted in this research. Research fields concerning golf course maintenance and plant protectant are believed to be necessary when compared to international trends. Moreover, advanced research efforts for the development of new cultivars with various environmental and disease resistance should be accomplished.

Effects of Composted Liquid Manure and Microbial Agent Types on Growth and Thatch Decomposing of Creeping Bentgrass (가축분뇨발효액비와 미생물제제 종류별 시용에 따른 크리핑 벤트그래스의 생육과 토양중 대취분해에 미치는 영향)

  • Lim, Ji Yeon;Ham, Suon Kyu;Lee, Yeong Min;Cha, Young Gi
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.4
    • /
    • pp.54-61
    • /
    • 2014
  • This study was conducted to investigate the effect of Actinomyces sp. and Bacillus sp., United States granular microorganisms and Japan granular microorganisms on turfgrass growth and thatch decomposing of creeping bentgrass in golf course by measuring turf color index, chlorophyll index, thatch content of soil, root length, turf density and chemical properties and thatch content of soil. Fertilizer treatment was designed as follows; control(CF; compound fertilizer), microorganism medium(M; CF+M), microorganism medium and livestock manure fertilizer(M-L; CF+M+LMF), microorganism medium, livestock manure fertilizer and amino acid liquid fertilizer(M-L-A; MM+LMF+ALF), United States granular microorganisms(USGM; CF+USGM), Japan granular microorganisms(CF+JGM). Soil properties investigated after experiment was scarcely affected by applied fertilizers in root zone of creeping bentgrass. The turf color index and chlorophyll index of M, M-L, M-L-A, USGM, JGM treatment were higher than those of CF. The turfgrass root in M-L treatment was longer than others. The thatch content of soil in M treatment was longer than others. The thatch content of M was decreased than that of CF by 6.8%. These was suggested that application of M induced the development of quality and growth of creeping bentgrass by assisting turfgrass growth and thatch decomposing.

Effect of Trinexapac-ethyl on Zoysiagrass Quality under a Shade Condition (그늘 지역에서의 Zoysiagrass에 미치는 Trinexapac-ethyl의 효과)

  • Ok, Chang-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.1
    • /
    • pp.25-31
    • /
    • 2006
  • 'Meyer' zoysiagrass(Zoysia japonica Steud.) is a popular turfgrass species used for transition zone golf course fairways and tees in mfd U.S.A golf courses because it is generally winter hardy while providing an excellent playing surface with minimal chemical and irrigation inputs. However, its functionality declines easily in many of the shaded areas of these courses. Reduced irradiance causes excessive shoot elongation, reduced tillering, and weak plants that are poorly suited to tolerate or recover from traffic and devoting. Trinexapac-ethyl (TE) effectively reduces gibberellic acid (GA) biosynthesis and subsequent shoot cell elongation. This study was initiated to evaluate TE effect on shoot elongation and stand persistence under two levels of shade in 'Meyer' zoysiagrass. A mature stand of 'Meyer' was treated with all combinations of three levels of shade(0%, 79%, and 92%) and three levels of monthly TE [0, 48 $g{\cdot}ha^{-1}$ a.i(0.5x) and 96 $g{\cdot}ha^{-1}$ a.i(1x)]. In full sun, the TE at 48 $g{\cdot}ha^{-1}$ a.i reduced clipping yield by 18% over a four-week period and, whereas the TE at 96 $g{\cdot}ha^{-1}$ a.i by 30% to 38%. Monthly application of TE at the 96 $g{\cdot}ha^{-1}$ a.i increased 'Meyer' tiller density in full sun and under 79% shade. Both rates of TE consistently reduced shoot growth under shade relative to the shaded control. Only the monthly applications of the TE at 96 $g{\cdot}ha^{-1}$ a.i consistently delayed loss of quality under 79% shade. Our results indicate TE can be an effective management practice to increase 'Meyer' zoysiagrass persistence in shaded environments.

Evaluation of Fungicides, Nozzle Type, and Spray Volume on Control of Typhula Blight on Cool Season Turfgrass (한지형잔디에 설부병 방제에 대한 살균제, 노즐타입 및 살포약량의 평가)

  • Chang, Tae-Hyun;Chang, Seog-Won;Jung, Geun-Hwa
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.160-170
    • /
    • 2011
  • Commercial formulation of fungicides was studied in vitro for sensitivity against Typhula species causal agents of Typhula blight. Efficacies of fungicides application, spray volume, nozzle types and fungicides applied time (early fall and late fall) were evaluated for their influence on the chemical control of Typhula blight of turfgrass during the winter season in Wisconsin. All fungicides effectively reduced the mycelial growth of eight isolates of Typhula spp. in vitro on potato dextrose agar (PDA) media. For inhibitory effects on mycelial growth of eight isolates, propiconazole was the most effective at $1.0{\mu}g$ active ingredient (a.i) / ml of PDA. Typhula incarnata two isolates were significantly more sensitive to all fungicides of PDA than six isolates of three varieties of T. ishikariensis. For 2 years in field experiment, unsprayed control has significantly more disease severity than seven fungicides were applied to field plots at two locations. Propiconazole was the most effective for controlling Typhula blight, at two locations in both years. The level of disease control was not dependent on fungicides spray volume or nozzle types at two locations. The disease damage treated with triadimefon applied time (early fall and late fall) was not significantly different at two location for two years.

Winterkill and Strategy of Golf Course Management: A Review (동절기 피해의 이해와 겨울철 골프장 관리: 리뷰)

  • Lee, Sang-Kook
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.133-137
    • /
    • 2011
  • Winterkill can be defined as any injury including freeze stress kill, winter desiccation, and low temperature disease to turfgrass plants that occurs during the winter period. The major damages from winterkill were low temperature kill, crown hydration, and winter desiccation. Low temperature kill is caused by air and soil temperature. Soil temperature affect more severe to turfgrass than air temperature because low soil temperature cause fetal damage to turfgrass crown. Crown hydration is a form of winter injury in which intercellular water within the plant freezes and causes physical injury to the cell membrane and wall. This is eventually resulted in dehydration of cell. Winter desiccation is the death of leaves or whole plants due to drought during the winter period. To reduce winterkill damage, cultivar selection is very important. If changing cultivar is not allowed, cold temperature hardiness needs to be increased by providing nutrients especially phosphorus and potassium in the late fall. Turf cover is effective way to reduce winterkill damage. Remaining snow is positive process to reduce winterkill damage by insulating soil temperature. The previous researches reported many materials as turf cover such as straw, polypropylene, polyester, and wood mat. Aeration and topdressing is one of the process against winterkill. Both methods are mainly conducted to reduce thickness of thatch layer. In recent, relatively new materials called black or winter topdressing sand are used to protect soil temperature from low air temperature and thaw ice crystal that may remain in soil.