• Title/Summary/Keyword: golden apple snail (Pomacea canaliculata)

Search Result 18, Processing Time 0.029 seconds

Herbivory effects and growth rate of invasive species, Pomacea canaliculata on different macrophytes species

  • Ismail, Hasnun Nita;Anuar, Wan Nurul Hidayah Wan;Noor, Noormawaty Mohammad
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.12
    • /
    • pp.415-427
    • /
    • 2021
  • Wetland ecosystems act as natural freshwater purification systems, but their rich biodiversity is being threatened with the introduction of the non-native freshwater snail, Pomacea canaliculata. This study was conducted to measure the herbivory effects and growth rate of P. canaliculata on common macrophytes: Ipomoea aquatica, Ipomoea batatas, Pandanus amaryllifolius and Cucurma longa. In separate experiments, the macrophyte species were served as the snails' food as individual species and simultaneously. In the individual treatment, the growth pattern and rate were based on the snails' weight (mg/snail/day; n = 9) while the individual feeding consumption (mg/snail/day) was calculated from the leftover food. In the simultaneous treatment, the herbivory effects were evaluated as the feeding preference (%) from observations every two hours, while the total feeding consumption (mg) was calculated based on the food remaining after a 12-hour experiment (3 replicates: total n = 27). The results indicated that the growth pattern was significant for snails grazing on I. aquatica but not when other macrophyte species were eaten. The individual feeding consumption was higher when using I. aquatica than P. amaryllifolius but the growth rate for snails grazing on I. aquatica and P. amaryllifolius did not differ significantly. Meanwhile, the consumption of C. longa deterred the snails' growth rate. Although the snails consumed all the macrophytes in the individual experiment, when given the species simultaneously, the feeding preference and total feeding consumption were directed significantly more toward I. aquatica than P. amaryfollius and C. longa. We conclude that P. canaliculata is a generalist feeder given a limited choice of food but tends to show a strong feeding preference after being introduced to more food choices. These findings indicate that the introduction of P. canaliculata into wetland ecosystems may increase the herbivory effects on macrophytes, making these ecosystems vulnerable to the impact of eutrophication and biodiversity reduction.

Characteristics of benthic macroinvertebrate community and distribution of golden apple snail in certified environmentally-friendly paddy field complexes of South Korea (친환경 인증 논의 저서성 대형무척추동물 군집과 왕우렁이 분포의 특성)

  • Jeong Hwan Bang;I-Chan Shin;Young-Mi Lee;Dong-Gyu Lee;Mi-Jung Park;Seulgi Lee;Hyun-Jo Yoon;Sang-Gu Park;Yong-In Kuk;Sung-Jun Hong
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.2
    • /
    • pp.126-137
    • /
    • 2023
  • Paddy fields provide important habitats for biodiversity conservation within the agricultural ecosystem. Their importance is gradually increasing as their ecological value is better understood. Benthic macroinvertebrates dominate paddy fields. They play an essential role in maintaining the biodiversity of paddy ecosystems. This study aimed to analyze characteristics of benthic macroinvertebrate communities and main environmental factors affecting the distribution of golden apple snails (Pomacea canaliculata). Results showed that the diversity index (H') of the benthic macroinvertebrate community was the highest at the Sangju site (St. 12) but the lowest at the Sancheong site (St. 18). Total Dissolved Solids (TDS), salinity, and Electrical Conductivity (EC) values were the highest in Gimhae and Yeongam based on Canonical Correspondence Analysis (CCA). Numbers of P. canaliculata (m-2) were relatively low in Gunsan and Iksan where water temperatures were high. Therefore, changes in geographical characteristics and environmental factors might affect the distribution of P. canaliculata and characteristics of benthic macroinvertebrate communities. Results of this study can be used as primary data for biodiversity conservation and ecosystem service evaluation in agroecosystems.

Effectiveness of Plant-Based Attractants in Preventing the Escape of Golden Apple Snails (Pomacea canaliculata) into the Ecosystem

  • Il Kyu Cho;So-Young Jang;Woo Young Cho;Yun-Su Jeong;Jun Seok Kim;Seong Eun Han;Kil Yong Kim;Gi-Woo Hyoung
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.371-381
    • /
    • 2023
  • The effectiveness of plant-based attractants was studied using large traps, which attracted relatively more snails in agricultural water drainage ditches and rice-cultivating environments, although their effectiveness in rice fields and lakes was limited. The rate began to rise after three hours of observation. Watermelon peel exhibited the highest apple snail attraction rate (13.8%), followed by potatoes (10.0%), and apple peel (8.8%). These values significantly differed from the attraction rate attributed to papaya leaves (F=3.84; P=0.0387). After 24 h, watermelon peel and apple peel indicated a higher rate of attraction (23.4% and 21.7%, respectively), which were significantly different compared with those of papaya leaves and potatoes (F=9.94; P=0.00455). Large bait traps outperformed funnel traps in capturing golden apple snails and trapped a significant number of snails measuring over 1 cm in size. Watermelon peel was the most effective attractant for a large bait trap, followed by apple peel, potatoes, and papaya leaves. On average, 110 snails were captured in the lure net. However, potatoes, apple peels, and papaya leaves caught an average of 93, 80, and 79 snails, respectively. Among the attractants, the lure effect of the snails was not significantly different. The efficiency of large bait traps in capturing snails, regardless of the plant attractant employed, followed the order: apple peel > watermelon peel and potatoes > papaya leaves > melon > Korean melon. Watermelon peel is highly recommended for farmer use, as well as apple peel and potatoes. Utilizing these snail attractants may contribute positively to developing a safe and environment-friendly integrated pest management strategy.

The Anti-inflammatory Effects of Golden Apple Snail (Pomacea canaliculata) in Reflux Esophagitis Model (왕우렁이 추출물의 역류성 식도염 억제 효과)

  • Nam, Hyeon Hwa;Ryu, Seung Mok;Yang, Sungyu;Kim, Wook Jin;Moon, Byung Cheol;Seo, Yun-Soo
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.1
    • /
    • pp.85-96
    • /
    • 2021
  • Reflux esophagitis (RE) is a common gastrointestinal disease observed at all ages, which seriously affects the quality of life. In this study, we investigated the anti-inflammatory effects of Pomacea canaliculata extract (PCE) using the experimental RE rat model. RE was induced by a surgical procedure. The rats were randomly divided into 4 groups: normal group, RE group, PCE group (RE treated with PCE, 100 mg/kg), positive control group (RE treated with ranitidine, 40 mg/kg). We performed the histological examination and measured the expression of tight junction complex and inflammatory mediators using western blot analysis. The phenotypes of RE were attenuated by PCE treatment. PCE administration significantly reduced esophageal mucosal damage and protected tight junction confirmed by claudin-5. Furthermore, PCE treatment reduced inflammatory reaction by inhibiting the expression of COX-2 and TNF-α. PCE treatment, also, reduced translocation of NF-κB into nuclear and IκB-α phosphorylation at the same time. Our findings indicate that PCE has the potential as a novel therapeutic agent to inhibit RE by protecting mucosal damage and regulating inflammatory reactions mediated by NF-κB signaling.

The Environmental Adaptability of Pomacea canaliculata used for Weed Control in Wet Rice Paddies and Crop Damage Caused by Overwintered Golden Apple Snails (논 잡초방제용 Pomacea canaliculata의 환경 적응성과 월동 왕우렁이에 의한 작물 피해)

  • Lee, Sang Beom;Lee, Sang Min;Park, Chung Bae;Lee, Cho Rong;Ko, Byong Gu;Park, Kwang Lai;Hong, Seung Gil;Kim, Jin Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.1
    • /
    • pp.23-33
    • /
    • 2019
  • BACKGROUND: The golden apple snail(GAS, Pomacea canaliculata Lamarck) is an invasive freshwater snail. It has occurred 34 years since the introduction of the GAS to the Korea. The GASs have been used recently for weed control in wet rice cultivation. The GASs'adaptability to the environment of GAS has been improved and the GASs devour the young stage of the crops as well as weeds. METHODS AND RESULTS: We surveyed the survival area of the snails throughout the country during the winter seasons from 2000 to 2017 and crop damage due to GASs in 2017. Local maximum, minimum, and average air temperatures were monitored daily. The surveyed regions for the survival of the GASs in winters were Gangjin, Goheung, Shinan, Haenam, Gimhae, Haman, Busan, Jeju, and Seogwipo. The survival durations at low temperatures were 12 hours at $-5^{\circ}C$, 1 day at $-3^{\circ}C$, 2 days at $-1^{\circ}C$, 10 days at $0^{\circ}C$, and over 30 days at $3^{\circ}C$. The eggs of GASs were not able to overwinter. The overwintering condition of the GAS needed a water depth of 10-20 cm with well formed mud. Crop damages caused by the overwintering GASs occurred in rice and water dropwort. CONCLUSION: The overwintering GAS was first identified in Haenam, South Korea 2000 after introduction of the GAS. The overwintering area of GAS expanded to the mid-southern parts of Korea. We propose that it has not yet become a pest to rice or any other crop.

Characterization of Heat Shock Protein 70 in Freshwater Snail, Semisulcospira coreana in Response to Temperature and Salinity (담수산다슬기, Semisulcospira coreana의 열충격단백질 유전자 특성 및 발현분석)

  • Park, Seung Rae;Choi, Young Kwang;Lee, Hwa Jin;Lee, Sang Yoon;Kim, Yi Kyung
    • Journal of Marine Life Science
    • /
    • v.5 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • We have identified a heat shock protein 70 gene from freshwater snail, Semisulcospira coreana. The freshwater snail HSP70 gene encode a polypeptide of 639 amino acids. Based on bioinformatic sequence characterization, HSP70 gene possessed three classical signature motifs and other conserved residues essential for their functionality. The phylogenetic analysis showed that S. coreana HSP70 had closet relationship with that of golden apple snails, Pomacea canaliculata. The HSP70 mRNA level was significantly up-regulated in response to thermal and salinity challenges. These results are in agreement with the results of other species, indicating that S. coreana HSP70 used be a potential molecular marker in response to external stressors and the regulatory process related to the HSP70 transcriptional response can be highly conserved among species.

Distribution Characteristics and Overwintering of Golden apple snails, Pomacea canaliculata (Gastropoda:Ampullariidae) at the Environment-friendly complex in Korea (한국 친환경농업단지의 왕우렁이 월동 및 분포특성)

  • Shin, I-Chan;Byeon, Young-Woong;Lee, Byung-Mo;Kim, Jurry;Yoon, Hyun-Jo;Yoon, Ji-Young;Lee, Young-Mi;Han, Eun-Jung;Park, Sang-Gu;Kuk, Yong-In;Choi, Duck-Soo;Cho, Il Kyu;Hong, Sung-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.279-289
    • /
    • 2021
  • BACKGROUND: Recently, the golden apple snail, Pomacea canaliculata has been used as an environmentally-friendly weed-control agent in rice farming. Although effective for this particular style of farming, P. canaliculata can be destructive to other crops. The objective of this study was to identify overwintering as well as regional and seasonal distribution characteristics of P. canaliculata. Notably, winter is typically fatal for P. canaliculata. However, owing to increasing average global temperatures, we assessed the ability of P. canaliculata to survive through uncharacteristically warm winters. METHODS AND RESULTS: To examine the distribution and overwintering regions of P. canaliculata, We conducted a survey from April 2020 to May 2021 on environmentally-friendly rice fields, agricultural waterways, and streams in 23 cities belonging to 8 provinces. In addition, because air temperature may influence the distribution density of P. canaliculata, we analyzed the winter temperature data (http://weather.rda.go.kr). CONCLUSION(S): In 2021, overwintering of P. canaliculata (1-3 individuals/m2) was observed in the Goheung and Yeongam regions in Jeonnam. Overwintering of P. canaliculata was observed in fewer regions in 2021 than in 2020; this fact may be attributed to the lower minimum temperatures measured in 2021 (approximately 8℃ lower) than those in 2020. Our results suggest that overwintering occurs as long as overnight temperatures are ≥ -15℃, but can take place if temperatures are as low as -19℃.

Weedy Control Efficacy and Injury of Rice Plant by Golden Apple Snail(Pomacea canaliculata) in Environment-friendly Rice Paddy Fields (벼 친환경재배에서 왕우렁이의 잡초방제효과 및 피해)

  • Kwon, Oh-Do;Park, Heung-Gyu;An, Kyu-Nam;Lee, Yeen;Shin, Seo-Ho;Shin, Gil-Ho;Shin, Hae-Ryoung;Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.30 no.3
    • /
    • pp.282-290
    • /
    • 2010
  • The objective of this research was to discover the best method for weed management in environment-friendly rice paddy fields through the study on the effect of weed control and injury levels of rice plants as affected by size, input time, and input amount of golden apple snail (GAS). The efficacy of weed control as affected by GAS when applied at 5, 10, and 15 days after transplanting (DAT) was 98, 89, and 58%, respectively. The efficacy of weed control had declined as late the input time of GAS. On the other hand, the efficacy of weed control as affected by rice bran followed by GAS treatment was higher than by GAS treatment alone. Weed species such as Persicaria hydropiper, Echinochloa crus-galli, Scirpus juncoides, and Monochoria vaginalis were not completely controlled by GAS when applied late. Input amount and time of adult GAS (70 days after hatching) for effective weed control were 3 kg $10a^{-1}$ at 5 DAT, 6-7 kg $10a^{-1}$ at 10 DAT, and 7 kg $10a^{-1}$ at 15 DAT. Input time and amount of young GAS (35 days after hatching) for effective weed control were 0 day after harrow (DAH) and 1 kg $10a^{-1}$, respectively. The young GAS when applied 0 DAH at 1 kg $10a^{-1}$ provided 100% control of P. hydropiper, E. crus-galli, S. juncoides, M. vaginalis, Ludwigia prostrata, Eleocharis kuroguwai, Sagittaria trifolia and Cyperus difformis. The rice foliar injury caused by adult (3 kg $10a^{-1}$) and young (1 kg $10a^{-1}$) GAS were 5-7% and 1% respectively. There was no significant difference in rice injury by size and input amount of GAS on plant height and number of tiller. These data indicate that the young GAS when applied 1 kg $10a^{-1}$ at 0 day after harrow was the best method for weed management in environment-friendly rice paddy fields.