• Title/Summary/Keyword: gold-silver concentrate

Search Result 4, Processing Time 0.016 seconds

The Leaching of Gold-silver from Refractory Gold Concentrate by Chlorine-hypochlorite Solution (염소-차아염소산 용액에 의한 저항성 금 정광으로부터 Gold-silver 용출)

  • Cho, Kang-Hee;Kim, Bong-Ju;Oh, Su-Ji;Choi, Seoung-Hwan;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.123-130
    • /
    • 2012
  • Leaching experiments of gold and silver from roasted concentrate were carried out using a chlorine-hypochlorite solution. The leaching rate of gold was 75% at 1.5:1 ratio of chlorine and hypochlorite and increased to 81% with adding 1 M NaCl. However, at 1% pulp density and at $65^{\circ}C$, the leaching rates of Au were close to 100%. XRD analysis identified quartz in the solid residues after digestion of roasted concentrate with aqua regia or chlorine-hypochloride leaching solution. This suggests that the gold may not be leached out of the quartz in aqua regia or chlorine-hypochlorite solution. In order to leach the gold from the quartz, the concentrate will have to be pre-treated through ultra-fine grinding or treated with stronger oxidative agents.

Mineralogical Transformation of Gold-silver Bearing Sulfide Concentrate by Mechanochemical Activation, and their Gold-silver Leaching with Non-cyanide Solution (기계적-화학적 활성화에 따른 금-은-정광의 광물학적 상변화와 비-시안 용매에 의한 금-은 용출 향상)

  • Kim, Bong-Ju;Cho, Kang-Hee;Oh, Su-Ji;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.115-124
    • /
    • 2014
  • In order to leach Au and Ag from gold-silver bearing sulfide concentrate, the sulfide concentrate was ground in a ball mill for a dry pre-treatment and a wet pre-treatment process. Mineralogical studies and thiourea leaching experiments were carried out with the pre-treated sulfide concentrate. The results of the pre-treatment with the concentrate samples showed the mean particle size and iso-electrical potential was smaller in the dry pre-treatment sample than in the concentrate sample, and the contents was lower in the wet pre-treatment sample than in the dry pre-treatment sample. In XRD analysis, amorphous properties were only shown in the wet pretreatment sample. The results of the concentrate sample leaching experiments showed that the best Au, Ag leaching parameters were when the addition of thiourea was at a 1.0 g concentration, ferric sulfate was 1.0 M, sulfuric acid was 2.0 M and the leaching temperature was at $60^{\circ}C$. The Au, Ag leaching rate was always much greater and faster with the wet pre-treatment samples than with the dry pre-treatment samples. Accordingly, it is expected that more Au, Ag can be leached in an eco-friendly methodology using wet pre-treatment. The pre-treatment could be improved with an optimized grinding additive reagent and through researching grinding time in future non-cyanide processes.

A Study on the Leaching of Gold and Silver from Concentrate by Acidothiouration (산성치오요소법에 의한 금정광으로부터 금, 은의 침출에 관한 연구)

  • 김성규;이화영;오종기
    • Resources Recycling
    • /
    • v.3 no.2
    • /
    • pp.17-23
    • /
    • 1994
  • The dissolution of gold and silver from concentrate was studied with acidic thiourea solution. The results showed that the gold and silver extraction was severely affected by concentration of thiourea and oxidant, pulp density, etc. Especially, oxidant such as ferric ions enhanced the leching rate of gold and silver. High concentration of ferric ions, however, dissolved the sulfide ore to form electrochemically passive layer on the surface of ore particles, which caused the precious metal not to be leached out from the ore. The use of $SO_2$could not effectively enhance the recovery of precious metal but reduce to some extent the consumption of thiourea. The leaching of gold and silver was achieved with recovery more than 90% and 80%, respectively, under the following conditions; Thiourea conc. :0.4M Oxidant : None $H_2SO_4$ conc. : 0.5M Pulp density : <10% Leaching time :4 Hrs Potential :250mV The Thiourea was consumed about 10% in comparison with its initial concentration.

  • PDF

Optimization of Gold Leaching from the Refractory Sulfide Concentrate by HCl-NaClO-FeCl3 Solution (HCl-NaClO-FeCl3 용액을 이용한 저항성 황화광물 정광으로부터 금 용출 최적화)

  • Kim, Bong-Ju;Cho, Kang-Hee;Lee, Jong-Ju;Choi, Nag-Choul;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • In order to optimize gold leaching from refractory sulfide concentrate, a HCl-NaClO-$FeCl_3$ solution with varying attributes was applied to the roasted concentrate from Uil mine. The gold from Uil mine occurs in the form of invisible gold that is difficult to leach. The results of the gold leaching experiments showed that the best gold leaching parameters were $550^{\circ}C$ of roasting temperature, 2.0 M of concentration, 1.0% of pulp density, and $70^{\circ}C$ of leaching temperature. It is confirmed that the HCl-NaClO-$FeCl_3$ solution was an environmentally friendly method to leach gold and silver from the refractory sulfide concentrate as an alternative lixiviant to cyanide.