• Title/Summary/Keyword: gold-dominant deposit

Search Result 10, Processing Time 0.027 seconds

Chemical Variations of Electrum from Gold and/or Silver Deposits in the Southeast Korea (한국 동남부지역 금·은 광상산 에렉트럼의 화학조성)

  • Choi, Seon-Gyu;Park, Maeng-Eon;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.325-333
    • /
    • 1994
  • Gold and/or silver mineralization in the southeast province, Korea, occurred in hydrothermal quartz vein that fills fracture zones in Cretaceous volcanic and sedimentary rocks of the Gyeongsang basin or granites and Precambrian gneiss. Most of the gold-silver-bearing veins in the province occur in Hapcheon, Suncheon and Haman-Gunbuk area where they are associated with Cretaceous Bulgugsa granites. On the basis of the Ag/Au ratio on amounts produced and ore grades, mode of occurrence, and associated mineral assemblages, hydrothermal Au-Ag deposits in southeast province, Korea, can be classified as follows: pyrite-type gold deposit (Group IIB, Samjeong and Sangchon deposits), antimony-type gold-silver deposit (Group IV, Gisan and Geochang deposits), and antimony-type silver deposit (Group V, Sanggo, Seweon, Seongju and Gahoe deposits). All of the gold-silver deposits in the province are generally characteristics of the gold-silver or silver-dominant type deposit which contains more silver-bearing minerals than those deposits in central Korea. The gold-silver mineralization in the deposits consist of two generation; the early characterized by gold precipitation and the late represented by silver-rich (as silver-bearing sulfosalts minerals) mineralization. All but one deposit (Samjeong deposit) having relatively lower Au content in electrum values between ${\approx}20$ and ${\approx}50$ atomic %. The mineralogical data on electrum-sphalerite and/or arsenopyrite geothermometry and fluid inclusion data indicate that the gold and silver mineralizations were occurred at temperatures of $190{\sim}280^{\circ}C$ and $150{\sim}180^{\circ}C$, respectively. These suggest that the gold-silver mineralization in the province occurred in the lower temperature and pressure conditions as epithermal-type hydrothermal vein deposit.

  • PDF

Mineralogy of gold-silver deposits in Chungcheong Province (충청도(忠淸道) 일원(一圓)의 금(金)·은(銀)광상(鑛床)에 대한 광물학적(鑛物學的) 연구(硏究))

  • Choi, Seon Gyu;Park, No Young;Hong, Sei Sun
    • Economic and Environmental Geology
    • /
    • v.21 no.3
    • /
    • pp.223-234
    • /
    • 1988
  • A large number of gold and/or silver-bearing quartz veins occur in or near Mesozoic granite batholith elongated in a NE-SW direction within the Chungcheong Province. Precambrian schists and gneisses, and Jurassic and Cretaceous granitic rocks serve as hosts for gold and/or silver deposits. On the basis of Ag/Au total production and ore grade ratio, 15 mines may be divided into three major groups: gold-dominant deposits, gold-silver deposits, and silver-dominant deposits. The chemical composition of electrum from skarn deposit (Geodo mine), alaskite-type deposit (Geumjeong mine) and 15 vein deposits was summarized. It was found that the Au content of electrum for vein deposits ranging from 5.2 to 86.5 is lower than that for skarn and alaskite deposits. Among 15 vein deposits, the composition of electrum associated with pyrrhotite is relatively high and has a narrow range of 40.8 to 86.5 atomic % Au, but the Au content of electrum with pyrite is in range of 5.2 to 82.8 atomic %, and is clearly lower than that with pyrrhotite. The grouping of ages for these mines indicates that gold and/or silver mineralizations occurred during two periods in the Mesozoic. Daebo igneous activities are restricted to gold mineralization in the range of 158 to 133 Ma, whereas Bulgugsa igneous activities are related to gold and/or silver mineralization ranging from 108 to 71 Ma. Generally speaking, Jurassic gold-dominant veins have many common characteristics; notably prominent association with pegmatites, simply massive vein morphology, high fineness in the ore concentrates, rarity of silver minerals, and a distinctively simple mineralogy, including sphalerite, galena, chalcopyrite, pyrrhotite and/or pyrite. Although individual deposits exhibit widely differing diversity, Cretaceous gold-silver and silver-dominant veins are characterized by features such as complex vein, low to medium fineness in the ore concentrates and abundance of silver minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver.

  • PDF

The Nature of Gold Mineralization in the Archean Sunrise Dam Gold Deposit in Western Australia (호주 Sunrise Dam 광상의 금 광화작용)

  • Sung, Yoo-Hyun;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.429-441
    • /
    • 2010
  • The Sunrise Dam gold deposit is located approximately 850 km ENE of Perth, in the eastern part of the Yilgam Craton, Western Australia. The mine has produced approximately 153 t of Au at an average grade of 4.2 g/t, which stands for the most significant gold discoveries during the last decade in Western Australia. The deposit occurs in the Laverton Tectonic Zone corresponding to the corridor of structural complexity in the Laverton greenstone belt, and characterized by tight folding and thrusting. The mine stratigraphy consists of a complexly deformed and altered volcaniclastic and volcanic rocks. These have been overlain by a turbidite sequence containing generally well-sorted siltstones, sandstones and magnetite-rich shales, which are consistently fining upwards. These sequences have been intruded by quartz diorite, ultramafic dikes, and rhyodacite porphyry (Archean), and lamprophyre dikes (Palaeoproterozoic). These rocks constitute the asymmetric NNE-trending Spartan anticline with north-plunging thrust duplication of the BIF unit. The deposit is located on the western limb of this structure. Transported, fluvial-lacustrine and aeolean sediments lie unconformably over the deposit showing significant variation in relief. Gold mineralization occurs intermittently along a NE-trending corridor of ca. 4.5 km length. The 20 currently defined orebodies are centered on a series of parallel, gently-dipping ($\sim30^{\circ}$) and NESW trending shear zones with a thrust-duplex architecture and high-strain characteristics. The paragenetic sequence of the Sunrise Dam deposit can be divided into five hydrothermal stages ($D_1$, $D_2$, $D_3$, $D_4a$, $D_4b$), which are supported by distinctive features of the mineralogical assemblages. Among them, the D4a stage is the dominant episode of Au deposition, followed by the $D_4b$ stage, which is characterized by more diverse ore mineralogy including base metal sulfides, sulfosalts, and telluride minerals. The $D_4a$ stage contains higher proportions of microscopic free gold (48%) than D4b stage (12%), and pyrite is the principal host for native gold (electrum) followed by tetrahedrite-group minerals in both stages.

Compositional Variations of Sphalerites and Their Genetic Characteristics from Gold and/or Silver Deposits in Central Korea (한국 중부지역 금은광상산 섬아연석의 조성변화와 성인적 특성)

  • Choi, Seon-Gyu
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.135-143
    • /
    • 1993
  • Chemical compositions of sphalerites from 25 gold and/or silver deposits in central Korea were obtained with an electron probe microanalyzer. The FeS contents of sphalerites depend generally upon the assemblage of associated iron sulphides (pyrite and/or pyrrhotite) especially. The sphalerites coexisting with pyrrhotite show a narrow range of FeS variation, but the sphalerites associated with pyrite and/or pyrrhotite have the variable and wide range of FeS contents. The sphalerites from Au-dominant deposits, which vary considerably in each deposit, are generally characterized by high CdS content and low MnS content. On the contrary, the sphalerites from Ag-dominant and Au-Ag deposits tend to be characterized by relatively high MnS and very low CdS content. Based upon the mineralogy, fluid inclusions and stable isotope data, the Au-dominant deposits were formed under higher temperature and deeper depth than the Ag-dominant and Au-Ag deposits. The results suggest the possibility that the diverse sources and evolution of ore fluid at the time of ore deposition are responsible for the deposition of Cd and Mn components in sphalerites.

  • PDF

Mesozoic Granitoids and Associated Gold-Silver Mineralization in Korea (한국 중생대 화강암류와 이에 수반된 금-은광화작용)

  • 최선규;박상준;최상훈;신홍자
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.25-38
    • /
    • 2001
  • Contrasts in the style of the gold-silver mineralization in geologic and tectonic settings in Korea, together with radiometric age data, reflect the genetically different nature of hydrothermal activities, coinciding with the emplacement age and depth of Mesozoic magmatic activities. It represents a clear distinction between the plutonic settings of the Jurassic Daebo orogeny and the subvolcanic environments of the Cretaceous Bulgugsa igneous activities. During the Daebo igneous activities (about 200-130 Ma) coincident with orogenic time, gold mineralization took place between 197 and 127 Ma. The Jurassic deposits commonly show several characteristics: prominent association with pegmatites, low Ag/Au ratios in the ore-concentrating parts, massive vein morphology and a distinctively simple mineralogy including Fe-rich sphalerite, galena, chalcopyrite, Au-rich eIectrum. pyrrhotite and/or pyrite. During the Bulgugsa igneous activities (120-60 Ma), the precious-metal deposits are generally characterized by such features as complex vein morphology, medium to high AgiAu ratios in the ore concentrates, and abundance of ore minerals including base-metal sulfides, Ag sulfides, native silver, Ag sulfosalts and Ag tellurides. Vein morphology, mineralogical, fluid inclusion and stable isotope results indicate the diverse genetic natures of hydrothermal systems. The Jurassic Au-dominant deposits were formed at the relatively high temperature (about 300 to 450$^{\circ}$C) and deep-crustal level (>3.0 kb) from the hydrothermal fluids containing more amounts of magmatic waters (3180; 5-10 %0). It can be explained by the dominant ore-depositing mechanisms as CO2 boiling and sulfidation, suggestive of hypo/mesothermal environments. In contrast, mineralization of the Cretaceous Au-Ag type (108-71 Ma) and Agdominant type (98-71 Ma) occurred at relatively low temperature (about 200 to 350$^{\circ}$C) and shallow-crustal level «1.0 kb) from the ore-fonning fluids containing more amounts of less-evolved meteoric waters (15180; -10-5%0). These characteristics of the Cretaceous precious-metal deposits can be attributed to the complexities in the ore-precipitating mechanisms (mixing, boiling, cooling), suggestive of epilmesothermal environments. Therefore, the differences of the emplacement depth between the Daebo and the Bulgugsa igneous activities directly influence the unique temporal and spatial association of the deposit type.

  • PDF

The Cenetic Implication of Hydrothermal Alteration of Epithermal Deposits from the Mugeuk Area (무극 지역 천열수 광상 열수변질대의 성인적 의미)

  • 박상준;최선규;이동은
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.265-280
    • /
    • 2003
  • The Mugeuk mineralized area that associated with the pull-apart type Cretaceous Eumseong basin is composed of several gold-silver vein deposits that are emplaced in late Cretaceous biotite granite. The gold-silver deposits in the area show various hydrothermal alteration zones as well as Au/Ag ratios and ore mineralogy. The Geumbong mine showing relatively high gold fineness is composed of multiple veins and show alteration pattern; vein \longrightarrow phyllic \longrightarrow subphyllic \longrightarrow propylitic \longrightarrow subpropylitic zone. In contrast, The Taegeuk mines show the low fineness values, in far southern part are characterized by increasing tendency of simple and/or stockwork veins. The deposit displays alteration pattern; vein \longrightarrow propylitic \longrightarrow subpropylitic zone. Variations of alteration zone with depth show that phyllic zone are dominant in deeper level and propylitic zone sporadically overlapped by argillic zone are dominant in shallow level. The differences of alteration pattern between the gold-silver deposits are reflect the evolution of the hydrothermal fluids; the ore-forming fluids of the Geumbong mine are at relatively high temperature and salinity and highly-evolved meteoric water, developing phyllic zone, the Taegeuk mine containing greater amounts of less-evolved meteoric waters shows relatively low temperature and salinity in ore-forming fluids, developing propylitic zone. The various physicochemical environment for gold-silver mineralization in the Mugeuk mineralized area is due to proximity from heat source area (Mugeuk mine) to marginal area (Taegeuk mine) in a geothermal field. Therefore, it is suggested that the criteria for project exploration in the area are to focus on the area proximal to heat source and phyllic zone.

Occurrence of Gold Deposits of the Tumbang Lapan Area of the Middle Kalimantan, Indonesia (인도네시아 중부 칼리만탄 뚬방라판 지역 금광상의 산상)

  • Kim In-Joon
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.347-353
    • /
    • 2005
  • The geology of the Tumbang Lapan area consists of Permian to Carboniferous metamorphic rocks, Cretaceous granitic rocks, and Permian to Tertiary sedimentary and volcanic rocks. Three faults are developed in surveyed area, and are functioned as channels of the hydrothermal solution which farmed quartz veins within tuff3. In the mineralized area, argillic and propylitic alterations are dominant. Argillic altered rocks show the alteration mineral assemblages of kaolinte+sericite+quartz+chlorite+pyrite. Mineral association in propylitic alteration is chlorite+epidote+feldspar+quartz+pyrite+ magnetite. Vein type, fracture filling, stockwork are observed in survey area. As a result of analysis of samples from quartz veins and altered rocks, some mineralized rocks showed $0.01\~4.6g/t$ of gold.

한국 금-은광화작용과 천열수 광상의 성인모텔 : 탐사에의 적용

  • Choe Seon Gyu;Park Sang Jun;Kim Chang Seong
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.119-136
    • /
    • 2002
  • Contrasts in the style of the gold-silver mineralization in geologic and tectonic settings in Korea, together with radiometric age data, reflect the genetically different nature of hydrothermal activities, coinciding with the emplacement age and depth of Mesozoic magmatic activities. It represents a clear distinction between the plutonic settings of the Jurassic Daebo orogeny and the subvolcanic environments of the Cretaceous Bulgugsa igneous activities. During the Daebo igneous activities (c.a. 200-150 (?) Ma) coincident with orogenic time, gold mineralization took place between c.a. 195 and 135 (127 ?) Ma. The Jurassic Au deposits commonly show several characteristics; prominent association with pegmatites, low Ag/hu ratios in the ore-concentrating parts, massive vein morphology and a distinctively simple mineralogy including Fe-rich sphalerite, galena, chalcopyrite, arsenopyrite, Au-rich electrum, pyrrhotite and/or pyrite. During the Bulgugsa igneous activities $(110\~50Ma)$, the precious-metal deposits are generally characterized by such features as complex vein morphology, medium to high AE/AU ratios in the ore concentrates, and diversity of ore minerals including base-metal sulfides, pyrite, arsenopyrite, Ag-rich electrum and native silver nth Ag sulfides, Ag-Sb-As sulfosalts and Ag tellurides. Vein morphology, mineralogical, fluid inclusion and stable isotope results indicate the diverse genetic natures of hydrothermal systems in Korea. The Jurassic Au-dominant deposits (orogenic type) were formed at the relatively high temperature $(about\;300^{\circ}\;to\;450^{\circ}C)$ and deep-crustal level $(4.0{\pm}1.5\;kb)$ from the hydrothermal fluids containing more amounts of magmatic waters $(\delta\;^{18}O_{H2O}\;5\~10\%_{\circ})$. It can. It can be explained by the dominant ore-depositing mechanisms as $CO_2$ boiling and sulfidation, suggestive of hypo- to mesothermal environments. In contrast, the Cretaceous Au-dominant $(l13\~68\;Ma),\;Au-Ag \;(108\~47\;Ma)$ and Ag-dominant $(103\~45\;Ma)$ deposits, which correspond to volcanic-plutonic-related type, occurred at relatively low temperature $(about\;200^{\circ}\;to\;350^{\circ}C)$ and shallow-crustal level $(1.0\{pm}0.5\;kb)$ from the ore-forming fluids containing more amounts of less-evolved meteoric waters$(\delta\;^{18}O_{H2O}\;-10\~5\%_{\circ})$. These characteristics of the Cretaceous precious-metal deposits can be attributed to the complexities in the ore-precipitating mechanisms (mixing, boiling, cooling), suggestive of epi- to mesothermal environments. Therefore, the differences of the emplacement depth between the Daebo and the Bulgugsa igneous activities directly influence the unique temporal and spatial association of the deposit styles.

  • PDF

한국 금-은광화작용과 천열수 광상의 성인모델: 탐사에의 적용

  • 최선규;박상준;김창성
    • Proceedings of the KSEEG Conference
    • /
    • 2002.10a
    • /
    • pp.119-136
    • /
    • 2002
  • Contrasts in the style of the gold-silver mineralization in geologic and tectonic settings in Korea, together with radiometric age data, reflect the genetically different nature of hydrothermal activities, coinciding with the emplacement age and depth of Mesozoic magmatic activities. It represents a clear distinction between the plutonic settings of the Jurassic Daebo orogeny and the subvolcanic environments of the Cretaceous Bulgugsa igneous activities. Dunng the Daebo igneous activities (c.a. 200~150 (\ulcorner) Ma) coincident with orogenic time, gold mineralization took place between c.a. 195 and 135 (127 \ulcorner) Ma. The Jurassic Au deposits commonly show several characteristics; prominent association with pegmatites, low Ag/Au ratios In the ore-concentrating parts, massive vein morphology and a distinctively simple mineralogy including Fe-rich sphalerite, galena, chalcopyrite, arsenopyrite, Au-rich electrum, pyrrhotite and/or pyrite. During the Bulgugsa igneous activities (110~50 Ma), the precious-metal deposits are generally characterized by such features as complex vein morphology, medium to high Ag/Au ratios in the ore concentrates, and diversity of ore minerals including base-metal sulfides, pyrite, arsenopyrite, Ag-rich eletrum and native silver with Ag sulfides, Ag-Sb-As sulfosalts and he tellurides. Vein morphology, mineralogical, fluid inclusion and stable isotope results indicate the diverse genetic natures of hydrothermal systems in Korea. The Jurassic Au-dominant deposits (orogenic type) were formed at the relatively high temperature (about 300$^{\circ}$ to 45$0^{\circ}C$) and deep-crustal level (4.0$\pm$1.5 kb) from the hydrothermal fluids containing more amounts of magmatic waters ($\delta$$^{18}$ $O_{H2O}$; 5~10$\textperthousand$). It can be explained by the dominant ore-depositing mechanisms as $CO_2$ boiling and sulfidation, suggestive of hypo- to mesothermal environments. In contrast, the Cretaceous Au-dominant (l13~68 Ma), Au-Ag (108~47 Ma) and AE-dominant (103~45 Ma) deposits, which correspond to volcanic-plutonic-related type, occurred at relatively low temperature (about 200$^{\circ}$ to 35$0^{\circ}C$) and shallow-crustal level (1.0$\pm$0.5 kb) from the ore-forming fluids containing more amounts of less-evolved meteonc waters ($\delta$$^{18}$ $O_{H2O}$;-10~5$\textperthousand$). These characteristics of the Cretaceous precious-metal deposits can be attributed to the complekities in the ore-precipitating mechanisms (mixing, boiling, cooling), suggestive of epi- to mesothermal environments. Therefore, the differences of the emplacement depth between the Daebo and the Bulgugsa igneous activities directly influence the unique temporal and spatial association of the deposit styles.les.

  • PDF