• Title/Summary/Keyword: glycoside hydrolase family 74

Search Result 2, Processing Time 0.017 seconds

Molecular Cloning of Glycoside Hydrolase Family 74 Genes and Analysis of Transcript Products from the Basidiomycete Phanerochaete chrysosporium (담자균 Phanerochaete chrysosporium으로부터 유래한 Glycoside Hydrolase Family 74 유전자 클로닝과 전사산물 분석)

  • Lee, Jae-Won;Samejima, Masahiro;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.56-63
    • /
    • 2006
  • In order to evaluate the mechanism of cellulose hydrolysis, the complementary DNA encoding Glycoside Hydrolase Family (GHF)74 was cloned from Phanerochaete chrysosporium. Depending on the presence of Cellulose Binding Module (CBM), it can be classified as GHF74A or GHF74B. The GHF74A gene from P. chrysosporium (PcGHF74A) consists of 2163 bp encoding a protein of 721 amino acid residues. The PcGHF74A showed homology of 70~77% compared with the GHF74 from other filamentous fungi. The PcGHF74B, which contains CBM and is a member of family 1, was transcribed to various transcripts depending on the nature of carbon sources and their concentration. To study the possible presence of splice variants in GHF74B transcripts in P. chrysospoium, we carried out RT-PCR analysis using primers that designed based on the annotation data and sequenced data. Our result indicated that PcGHF74B was transcribed to several splicing variants in various culture conditions. Especially in the culture of 2% cellulose, three transcript products were observed. First transcript was presumed to be a full length ORF that contained 11th intron with stop codon at position 2562 bp. The second one consisted of 12 exons and 11 introns with stop codon at position 1187 bp with 7th exon. The shortest transcript consisted of 10 exons and 9 introns with stop codon at 910 bp in the 7th exon. These premature stop codon might prevent the synthesis of fully active GHF74 or contribute for the production of protein with distinct function depending on the ambient carbon sources.

Identification of catalytic acidic residues of levan fructotransferase from Microbacterium sp. AL-210 (Microbacterium sp. AL-210이 생산하는 levan fructotransferase의 효소활성에 중요한 아미노산의 동정)

  • Sung, Hee-Kyung;Moon, Keum-Ok;Choi, Ki-Won;Choi, Kyung-Hwa;Hwang, Kyung-Ju;Kim, Myo-Jung;Cha, Jae-Ho
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.6-11
    • /
    • 2007
  • [ $\beta$ ]-Fructofuranosidases, a family 32 of glycoside hydrolases (GH32), share three conserved domains including the W(L/M)(C/N)DP(Q/N), FRDPK, and ECP(D/G) motifs. The functional role of the conserved acidic residues within three domains of levan fructotransferase, one of the $\beta-fructofuranosidases$, from Microbacterium sp. AL-210 was studied by site-directed mutagenesis. Each mutant was overexpressed in E. coli BL21(DE3) and purified by using Hi-Trap chelating affinity chromatography and fast performance liquid chromatography. Substitution of Asp-63 by Ala, Asp-195 by Asn, and Glu-245 by Ala and Asp decreased the enzyme activity by approximately 100-fold compared to the wild-type enzyme. This result indicates that three acidic residues Asp-63, Asp-195, and Glu-245 play a major role in catalysis. Since the three acidic residues are present in a conserved position in inulinase, levanase, levanfructotransferase, and invertase, they are likely to have a common functional role as nucleophile, transition state stabilizer, and general acid in $\beta-fructofuranosidases$.