• Title/Summary/Keyword: glycoside

Search Result 635, Processing Time 0.026 seconds

Validation of a HPLC MS/MS Method for Determination of Doxorubicin in Mouse Serum and its Small Tissues (마우스 혈장과 조직에서의 doxorubicin 측정 HPLC-MS/MS 방법)

  • Park, Jung-Sun;Kim, Hye-Kyung;Lee, Hye-Won;Lee, Mi-Hyun;Kim, Hyun-Gi;Chae, Soo-Wan;Chae, Han-Jung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.16 no.1
    • /
    • pp.23-27
    • /
    • 2006
  • Doxorubicin (DXR) is a type of anti-cancer drug called an 'anthracycline glycoside', It works by impairing DNA synthesis, a crucial feature of cell division, and thus is able to target rapidly dividing cells. Doxorubicin is a very serious anti-cancer medication with definite potential to do great harm as well as great good. A liquid chromatography-tandem mass spectroscopy (LC-MS/MS) method was developed to identify and quantify DXR in small-volume biological samples. After the addition of internal standard (IS, $5{\mu}L\;of\;1{\mu}M/ml$ daunorubicin methanol solution) into the serum sample, the drug and IS were extracted by methanol. Following vortex for a 1min and centrifugation at 15,000g for 10 min the organic phase was transferred and evaporated under a vacuum. The residue was reconstituted with $350{\mu}L$ of mobile phase and $10{\mu}L$ was injected into C18 column with mobile phase composed of 0.05M ammonium acetate (0.1 M acetic acid adjusted to pH 3.5) and acetonitrile (40:60, v/v). The flow rate was kept constant at $350{\mu}L/min$. The ions were quantified in the multiple reaction mode (MRM), using positive ions, on a triple quadrupole mass spectrometer. The lower limits of quantification for Doxorubicin in plasma and small tissues were approximately 0.5 ng/mL and 0.5 ng/mL respectively. Intra- and inter-assay accuracy (% of nominal concentration) and precision (% CV) for all analytes were within 15%, respectively.

  • PDF

Lipid Contents and Fatty Acid Composition of Three Lipid Classes in Korean Pinenut (잣지질 성분의 분획정량 및 각 획분의 지방산 조성)

  • Kim, Myung;Rhee, Sook-Hee;Cheigh, Hong-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.4
    • /
    • pp.406-412
    • /
    • 1984
  • Total lipids (TL) from Korean pinenut (Pinuskoraiensis S & Z) were extracted, purified and fractionated into three lipid classes (neutral lipid: NL, glycolipid; GL, phospholipid; PL). Lipid contents(constituent components) and fatty acid composition of three lipid classes were determined by thin layer chromatography and gas chromatography. TL ranged from 69.0% to 69.8% in fresh pinenut and consisted of 95.9% to 96.7% NL, 3.2% to2.5% GL and 0.9% to 0.8% PL. In the NL, triglycerides were predominant (80.8%) with the smaller amounts of sterol, diglycerides, free fatty acids, sterol esters and hydrocarbons. Monogalactosyl diglycerides and esterified steryl glycosides (23.5%) were the major components of GL, but cerebrosides, steryl glycosides and digalactosyl diglycerides were also found as minor components. Of the PL, phosphatidyl choline (40.2%) and phosphatidyl ethanolamine (19.4%) were the major components, comprising over 60% of this class. Phosphatidyl inositol, lysophosphatidyl choline were also present in the PL. The major fatty acids in the NL were linoleic acid (48.6%), oleic acid (28.8%) and arachidic acid(14.4%), The fatty acid composition in the GL was similar to the pattern in the NL, but PL contained a higher percentage of palmitic acid (17.7%) and stearic acid (6.0%) than other lipid classes.

  • PDF

Molecular and Biochemical Characterization of a Novel Intracellular Low-Temperature-Active Xylanase

  • Zhou, Junpei;Dong, Yanyan;Tang, Xianghua;Li, Junjun;Xu, Bo;Wu, Qian;Gao, Yajie;Pan, Lu;Huang, Zunxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.501-509
    • /
    • 2012
  • A 990 bp full-length gene (xynAHJ2) encoding a 329-residue polypeptide (XynAHJ2) with a calculated mass of 38.4 kDa was cloned from Bacillus sp. HJ2 harbored in a saline soil. XynAHJ2 showed no signal peptide, distinct amino acid stretches of glycoside hydrolase (GH) family 10 intracellular endoxylanases, and the highest amino acid sequence identity of 65.3% with the identified GH 10 intracellular mesophilic endoxylanase iM-KRICT PX1-Ps from Paenibacillus sp. HPL-001 (ACJ06666). The recombinant enzyme (rXynAHJ2) was expressed in Escherichia coli and displayed the typical characteristics of low-temperature-active enzyme (exhibiting optimum activity at $35^{\circ}C$, 62% at $20^{\circ}C$, and 38% at $10^{\circ}C$; thermolability at ${\geq}45^{\circ}C$). Compared with the reported GH 10 low-temperature-active endoxylanases, which are all extracellular, rXynAHJ2 showed low amino acid sequence identities (<45%), low homology (different phylogenetic cluster), and difference of structure (decreased amount of total accessible surface area and exposed nonpolar accessible surface area). Compared with the reported GH 10 intracellular endoxylanases, which are all mesophilic and thermophilic, rXynAHJ2 has decreased numbers of arginine residues and salt bridges, and showed resistance to $Ni^{2+}$, $Ca^{2+}$, or EDTA at 10 mM final concentration. The above mechanism of structural adaptation for low-temperature activity of intracellular endoxylanase rXynAHJ2 is different from that of GH 10 extracellular low-temperature-active endoxylanases. This is the first report of the molecular and biochemical characterizations of a novel intracellular low-temperature-active xylanase.

Molecular Cloning and Expression of a Novel Protease-resistant GH-36 $\alpha$-Galactosidase from Rhizopus sp. F78 ACCC 30795

  • Yanan, Cao;Wang, Yaru;Luo, Huiying;Shi, Pengjun;Meng, Kun;Zhou, Zhigang;Zhang, Zhifang;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1295-1300
    • /
    • 2009
  • A 2,172-bp full-length gene (aga-F78), encoding a protease-resistant $\alpha$-galactosidase, was cloned from Rhizopus sp. F78 and expressed in Escherichia coli. The deduced amino acid sequence shared highest identity (45.0%) with an $\alpha$-galactosidase of glycoside hydrolase family 36 from Absidia corymbifera. After one-step purification with a Ni-NTA chelating column, the recombinant Aga-F78 migrated as a single band of ~82 and ~210 kDa on SDS-PAGE and nondenaturing gradient PAGE, respectively, indicating that the native structure of the recombinant Aga-F78 was a trimer. Exhibiting the similar properties as the authentic protein, purified recombinant Aga-F78 was optimally active at $50^{\circ}C$ and pH 4.8, highly pH stable over the pH range 5.0-10.0, more resistant to some cations and proteases, and had wide substrate specificity (pNPG, melidiose, raffinose, and stachyose). The recombinant enzyme also showed good hydrolytic ability to soybean meal, releasing galactose of $415.58\;{\mu}g/g$ soybean meal. When combined with trypsin, the enzyme retained over 90% degradability to soybean meal. These favorable properties make Aga-F78 a potential candidate for applications in the food and feed industries.

Comparison of Isoflavone Contents and Antioxidant Effect in Cheonggukjang with Black Soybean Cultivars by Bacillus subtilis CSY191

  • Azizul Haque, Md.;Hwang, Chung Eun;Lee, Hee Yul;Ahn, Min Ju;Sin, Eui-Cheol;Nam, Sang Hae;Joo, Ok Soo;Kim, Hyun Joon;Lee, Shin-Woo;Kim, Yun-Geun;Ko, Keon Hee;Goo, Young-Min;Cho, Kye Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.62-71
    • /
    • 2016
  • BACKGROUND: Soybeans are the rich sources of isoflavones. To date, the changes of isoflavone contents in various black soybeans cheonggukjang during fermentation by Bacillus subtilis CSY191 has not been investigated.METHODS AND RESULTS: This study investigated the changes of total phenolic and isoflavone contents and antioxidant effects during cheonggukjang fermentation made with four black soybean (BS) cultivars including Cheongja, Cheongja#3, Geomjeong#5, and Ilpumgeomjeong with a potential probiotic Bacillus subtilis CSY191. The total phenolic contents, isoflavone-malonylglycoside and -aglycone contents, and antioxidant activity were increased in cheonggukjang at 48 h fermentation, while the content of isoflavone-glycosides was decreased during cheonggukjang fermentation. In particular, the Cheongja#3 soybean fermented at 37℃ for 48 h displayed the highest antioxidant activities, compared to those of the other BS cultivars tested. Also, the highest levels of total phenolic, daidzein, glycitein, and genistein were present at concentrations of 17.28 mg/g, 283.7 g/g, 39.9 g/g, and 13.2 g/g at the end of Cheongja#3 soybean fermentation.CONCLUSION: The results from this study suggested that the enhanced antioxidant activity of cheonggukjang of BS might be related to increased levels of total phenolic, isoflavon-aglycone, and malonyl-glycoside contents achieved during fermentation. Furthermore, fermented Cheongja#3 soybean showed the highest levels of enhanced antioxidant activities than the other BS cultivars.

ACE Inhibitory Lignan Glycosides Isolated from Eucommia ulmoides Oliver (두충으로부터 분리한 Iignan glycoside 의 ACE 활성 억제)

  • Joo, Ok-Soo;Nam, Sang-Hae
    • Journal of Life Science
    • /
    • v.19 no.6
    • /
    • pp.698-704
    • /
    • 2009
  • To evaluate a potential possibility of Eucommia ulmoides Oliver as a functional food, ACE (angiotensin converting enzyme) inhibitory activities of leaf, bark, stem and 4 compounds isolated from E. ulmoides were tested. The 4 compounds were isolated and purified by silica gel column chromatography, thin layer chromatography and reverse phase column chromatography. Compound I was pinoresinol-4,4'di-O-${\beta}$-D-glucoside (PG) and compound II was dehydrodiconiferyl alcohol 4,${\gamma}$'-di-O-${\beta}$-D-glucopyranoside (DAG) originating from Eucommial Cortex. The highest amount of PC was present at raw and roasted bark as 135.13 mg% and 163.67 mg%, and the highest amount of DAG was present at raw and roasted leaf as 117.93 mg% and 133.93 mg% respectively. In an ACE inhibition test, 10 mg/ml of roasted leaf, raw and roasted bark extracts of E. ulmoides Oliver were 77.49%, 75.72% and 75.36% respectively, and 10mg/ml of PC and DAG were shown to be 78.51 and 81.20% respectively. $IC_{50}$ values of PG and DAG were 0.6${\pm}$0.2 and 0.5${\pm}$0.2 mg/ml respectively.

Depolymerization of Sodium Alginates by e-Beam Irradiation (전자빔조사에 의한 알지네이트 저분자화)

  • Shin, Chul-Wha;Choi, Soo-Kyung
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.227-232
    • /
    • 2014
  • Depolymerization of sodium alginate (SA) was carried out by electron beam irradiation in a hydrogen peroxide atmosphere. E-beam with 1.0 and 2.5 MeV of accelerating voltages were employed in this experiment. For control of molecular weight and the radiation yield of scission ($G_s$), the irradiation dosage of e-beam was managed in a range from 2.5 to 20 kGy while the quantity of hydrogen peroxide was adjusted in a range of 0 to 4.5%. The chemical structure of the depolymerized sodium alginate (DSA) was analyzed to have scission of 1,4-glycoside bond mainly and a few fragmentary formate end groups which may be produced by the cleavage between C2 and C3 in repeating unit of alginate. It turned out to have simple chemical structures at the DSA end groups, produced by e-beam irradiation, similar with those in the polymer SA structure. As a result, the molecular weight of SA decreased as the energy and dosage of applied e-beam increased, and the radiation yield of scission showed the best result at 2w/v% in SA concentration. The highest radiation yield of scission ($7.919{\times}10^4mol/J$) was confirmed when an irradiation dosage of 20 kGy (2 MeV) and 1.5% hydrogen peroxide were used in 2% SA aqueous solution.

Quality Characteristics and Composition Profile of Traditional Doenjang and Manufactured Doenjang during Storage Time (저장기간에 따른 전통된장과 개량식된장의 이화학적 특성, 기능성분 및 대사체 분석)

  • Kang, Hee-Joo;Kim, Jin-Hee;Kim, Ri-Rang;Kim, Kang Sung;Hong, Sang-Phi;Kim, Min-Jung;Yang, Hye Jeong
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.5
    • /
    • pp.785-794
    • /
    • 2016
  • This research was conducted to evaluate quality changes in traditional Doenjang and manufactured Doenjang during a storage period of 8 weeks. Low-salt Doenjang and commercial Doenjang were purchased from different manufacturers and proximate analysis as well as changes in isoflavone, polyphenol, flavonoid contents of the samples were investigated using a mass spectrophotometer. The salinity of traditional Doenjang, low salt Doenjang, and commercial Doenjang were $13.2{\pm}1.15$, $7.17{\pm}2.74$, $10.67{\pm}0.35%$, respectively and the salt concentrations of the soybean pastes did not change during storage. After 8 weeks at $35^{\circ}C$, chromatic values of all the paste samples decreased somewhat, with traditional Doenjang exhibiting fewer changes as compared to manufactured Doenjang. Amino acid nitrogen, acidity, microbial population all tended to increase with time, although some samples showed fluctuations during the test period. Moreover, the total isoflavone contents of traditional Doenjang increased with storage time while that of manufactured Doenjang tended to decrease. The isoflavone aglycone was shown to be the highest in traditional Doenjang, while isoflavone glycoside was abundant in manufactured Doenjang. Total flavonoid contents showed similar trends regardless of samples; initial contents of total flavonoid was 0.6 mg/g which increased to more than twice to 1.4 mg/g at the end of storage period. Composition profile of Doenjang extracts was analyzed using UPLC-Q-ToF.

Isolation of Anticonvulsant Compounds from the Fruits of Schizandra chinensis$B_{AILI}$ (오미자(Schizandra chinensis $B_{AILI}$.) 열매로부터 항경련 활성물질의 분리)

  • Han, Jae-Taek;Ahn, Eun-Mi;Park, Jin-Kyu;Cho, Sung-Woo;Jeon, Seong-Gyu;Jang, Joong-Sik;Kim, Choong-Kwon;Choi, Soo-Young;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.72-77
    • /
    • 2000
  • The repeated silica gel colum chromatographies of EtOAc fraction, showing anticonvulsant activity, obtained from MeOH extracts of Schizandra chinensis B. fruits led to isolation of a sesquiterpenoid, four lignans and a sterol glycoside. Their chemical structures were determined to be chamigrenal, gomisin A, gomisin H, gomisin N. schizandrin and daucosterol. Among them, schizandrin and daucosterol inhibited GABA degrative enzymes, succinic semialdehyde dehydrogenase and succinic semialdehyde reductase, respectively. It is postulated that the schizandrin and daucosterol are able to elevate the neurotransmitter GABA levels in central nervous system by inhibitory action on GABA degrative enzymes and act as anticonvulsant drugs.

  • PDF

Chemical Structure of the Major Color Component from a Korean Pigmented Rice Variety (한국산 유색미에서 분리한 안토시아닌의 화학구조)

  • Cho, Man-Ho;Paik, Young-Sook;Yoon, Hye-Hyun;Hahn, Tae-Ryong
    • Applied Biological Chemistry
    • /
    • v.39 no.4
    • /
    • pp.304-308
    • /
    • 1996
  • The major color component of a Korean pigmented rice (Oeyza sativa var. Suwon 415) was purified with Amberlite XAD-7 column and preparative paper chromatography. The purified pigment was determined as anthocyanin by paper chromatography, UV/Vis and NMR spectroscopy. The $\lambda_{max}$ of the Purified anthocyanin on UV/Vis spectrum were 529 nm and 281 nm. The $A_{440}/A_{529}$ value of the purified anthocyanin was 23% suggesting the presence of 3-glycosidic structure. The aglycone from acid hydrolysis showed bathochromic shift (18 nm) in the presence of $AlCl_3$ indicating that the anthocyanidin contained free adjacent hydroxyl groups such as cyanidin, delphinidin, petunidin or luteolinidin. The sugar moiety obtained from acid hydrolysis was determined as glucose by paper chromatography. The NMR spectra showed that the aglycone was cyanidin and the sugar was ${\beta}-D-glucopyranose$. Thus, the chemical structure of the purified anthocyanin was identified as cyanidin $3-O-{\beta}-D-glucopyranoside$.

  • PDF